organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(3,5-Di-tert-butyl-4-hy­droxy­benzyl­sulfan­yl)nicotinic acid

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 11 August 2008; accepted 13 August 2008; online 16 August 2008)

Two mol­ecules of the title compound, C21H27NO3S, are disposed about a center of inversion, generating an O—H⋯O hydrogen-bonded dimer.

Related literature

For the applications of hindered phenol-based anti­oxidants, see: Kim & Lee (2003[Kim, T. H. & Lee, N. (2003). Bull. Kor. Chem. Soc., 24, 1809-1813.]); Um & Lee (2005[Um, S.-I. & Lee, J.-Y. (2005). Dyes Pigm. 64, 93-99.]).

[Scheme 1]

Experimental

Crystal data
  • C21H27NO3S

  • Mr = 373.50

  • Triclinic, [P \overline 1]

  • a = 5.6305 (1) Å

  • b = 9.3489 (2) Å

  • c = 18.8749 (3) Å

  • α = 85.505 (1)°

  • β = 89.453 (1)°

  • γ = 87.834 (1)°

  • V = 989.77 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.18 mm−1

  • T = 100 (2) K

  • 0.25 × 0.15 × 0.05 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.956, Tmax = 0.991

  • 12688 measured reflections

  • 4507 independent reflections

  • 3746 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.127

  • S = 1.18

  • 4507 reflections

  • 239 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.75 e Å−3

  • Δρmin = −0.71 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1o⋯O2i 0.85 (1) 1.79 (1) 2.640 (2) 179 (3)
Symmetry code: (i) -x, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2008[Westrip, S. P. (2008). publCIF. In preparation.]).

Supporting information


Comment top

The compound (I, Fig. 1) is the precursor for the synthesis of hindered phenol-based antioxidants. Phenol-based antioxidants and their derivative have applications in industries such as pharmaceutical, textiles, plastics, polymers, oils, pesticides,dyestuffs, explosives, fluorescent-brightening industries (Kim & Lee, 2003; Um & Lee, 2005). Molecules are connected into centrosymmetric dimers via the eight- membered {OCOH}2 synthon (Table 1). The hydroxyl-H projects between the two sterically hindered aromatic rings and is therefore precluded from forming a hydrogen bonding interaction.

Related literature top

For the applications of hindered phenol-based antioxidants, see: Kim & Lee (2003); Um & Lee (2005).

Experimental top

2-Mercaptonicotinic acid (1.50 g, 1 mmol), 2,6-di-t-butylphenol (2.00 g, 1 mmol) and paraformaldehyde (0.291 g,1 mmol) were intimately ground into a powder and to this was added di-n-butylamine (0.09 ml). The slurry was heated to 373–383 K and after an hour, this solidified. The solid was purified by column chromatography, with chloroform as solvent, to give two products, one of which was the expected acid, (I), and the other, the di-n-butylammonium salt of the acid.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 to 0.99 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2–1.5U(C). The acid H-atom was located in a difference Fourier map, and was refined with a distance restraint of O–H 0.84±0.01 Å; its temperature factor were freely refined. The hydroxy H-atom was placed in a chemically sensible position, with a distance of more than 2 Å from the neighboring methyl H-atoms. The C–O–H fragment is then perpendicular to the aromatic ring.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2008).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of the hydrogen-bonded dimeric structure of (I) drawn at the 70% probability level. Dashed lines denote the hydrogen bonds. Hydrogen atoms are drawn as spheres of arbitrary radius.
2-(3,5-Di-tert-butyl-4-hydroxybenzylsulfanyl)nicotinic acid top
Crystal data top
C21H27NO3SZ = 2
Mr = 373.50F(000) = 400
Triclinic, P1Dx = 1.253 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.6305 (1) ÅCell parameters from 3920 reflections
b = 9.3489 (2) Åθ = 2.2–28.4°
c = 18.8749 (3) ŵ = 0.18 mm1
α = 85.505 (1)°T = 100 K
β = 89.453 (1)°Prism, colorless
γ = 87.834 (1)°0.25 × 0.15 × 0.05 mm
V = 989.77 (3) Å3
Data collection top
Bruker SMART APEX
diffractometer
4507 independent reflections
Radiation source: fine-focus sealed tube3746 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ω scansθmax = 27.5°, θmin = 1.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 77
Tmin = 0.956, Tmax = 0.991k = 912
12688 measured reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127H atoms treated by a mixture of independent and constrained refinement
S = 1.18 w = 1/[σ2(Fo2) + (0.0642P)2 + 0.2102P]
where P = (Fo2 + 2Fc2)/3
4507 reflections(Δ/σ)max = 0.001
239 parametersΔρmax = 0.75 e Å3
1 restraintΔρmin = 0.71 e Å3
Crystal data top
C21H27NO3Sγ = 87.834 (1)°
Mr = 373.50V = 989.77 (3) Å3
Triclinic, P1Z = 2
a = 5.6305 (1) ÅMo Kα radiation
b = 9.3489 (2) ŵ = 0.18 mm1
c = 18.8749 (3) ÅT = 100 K
α = 85.505 (1)°0.25 × 0.15 × 0.05 mm
β = 89.453 (1)°
Data collection top
Bruker SMART APEX
diffractometer
4507 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3746 reflections with I > 2σ(I)
Tmin = 0.956, Tmax = 0.991Rint = 0.028
12688 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0421 restraint
wR(F2) = 0.127H atoms treated by a mixture of independent and constrained refinement
S = 1.18Δρmax = 0.75 e Å3
4507 reflectionsΔρmin = 0.71 e Å3
239 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.58009 (7)0.68988 (5)0.60316 (2)0.01722 (13)
O10.0857 (2)0.63037 (14)0.42620 (6)0.0211 (3)
H1O0.014 (4)0.566 (2)0.4379 (14)0.053 (8)*
O20.2215 (2)0.56848 (14)0.53598 (6)0.0222 (3)
O30.8816 (2)0.54828 (13)0.92906 (6)0.0161 (3)
H3O0.78480.49340.95030.024*
N10.7549 (3)0.87163 (16)0.50351 (7)0.0177 (3)
C10.2358 (3)0.64038 (19)0.47879 (9)0.0184 (4)
C20.4212 (3)0.74553 (19)0.46400 (8)0.0176 (4)
C30.4393 (3)0.8192 (2)0.39715 (9)0.0203 (4)
H30.33160.80150.36070.024*
C40.6135 (3)0.9179 (2)0.38393 (9)0.0214 (4)
H40.62840.96890.33860.026*
C50.7661 (3)0.9404 (2)0.43878 (9)0.0203 (4)
H50.88561.00870.42990.024*
C60.5857 (3)0.77544 (19)0.51655 (8)0.0165 (3)
C70.8320 (3)0.7718 (2)0.64204 (8)0.0171 (3)
H7A0.98000.74890.61590.021*
H7B0.80700.87750.63970.021*
C80.8498 (3)0.71171 (19)0.71821 (8)0.0149 (3)
C90.9743 (3)0.58333 (19)0.73576 (8)0.0152 (3)
H91.05140.53500.69900.018*
C100.9903 (3)0.52279 (18)0.80543 (8)0.0131 (3)
C110.8749 (3)0.59945 (18)0.85839 (8)0.0126 (3)
C120.7483 (3)0.73030 (18)0.84288 (8)0.0126 (3)
C130.7379 (3)0.78302 (18)0.77173 (8)0.0148 (3)
H130.65140.87060.75950.018*
C141.1234 (3)0.37706 (18)0.82171 (8)0.0151 (3)
C151.3288 (3)0.38746 (19)0.87432 (9)0.0184 (4)
H15A1.40890.29300.88320.028*
H15B1.26530.41960.91920.028*
H15C1.44260.45640.85410.028*
C160.9495 (3)0.2627 (2)0.85004 (10)0.0213 (4)
H16A0.82230.25630.81550.032*
H16B0.88070.28960.89520.032*
H16C1.03470.16950.85750.032*
C171.2390 (3)0.3219 (2)0.75437 (9)0.0233 (4)
H17A1.11580.30970.71930.035*
H17B1.32240.22950.76650.035*
H17C1.35250.39140.73450.035*
C180.6287 (3)0.81640 (18)0.90074 (8)0.0141 (3)
C190.8187 (3)0.8637 (2)0.95129 (9)0.0188 (4)
H19A0.90640.77890.97270.028*
H19B0.74150.91590.98880.028*
H19C0.92910.92650.92450.028*
C200.4410 (3)0.72805 (19)0.94254 (8)0.0164 (3)
H20A0.32260.69790.90960.025*
H20B0.36250.78690.97730.025*
H20C0.51840.64310.96740.025*
C210.4985 (3)0.95322 (19)0.86854 (9)0.0197 (4)
H21A0.37530.92720.83610.029*
H21B0.61231.01450.84230.029*
H21C0.42501.00530.90670.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0224 (2)0.0166 (2)0.0123 (2)0.00013 (16)0.00189 (15)0.00089 (15)
O10.0269 (7)0.0187 (7)0.0178 (6)0.0001 (5)0.0059 (5)0.0022 (5)
O20.0291 (7)0.0214 (7)0.0161 (6)0.0030 (5)0.0045 (5)0.0001 (5)
O30.0184 (6)0.0173 (6)0.0118 (5)0.0002 (5)0.0019 (4)0.0032 (5)
N10.0214 (7)0.0164 (8)0.0147 (6)0.0038 (6)0.0009 (5)0.0005 (6)
C10.0240 (8)0.0151 (9)0.0164 (8)0.0056 (7)0.0031 (6)0.0053 (7)
C20.0233 (8)0.0145 (9)0.0149 (8)0.0050 (7)0.0009 (6)0.0034 (6)
C30.0278 (9)0.0192 (10)0.0135 (8)0.0066 (7)0.0025 (6)0.0030 (7)
C40.0301 (9)0.0202 (10)0.0131 (7)0.0047 (7)0.0015 (7)0.0012 (7)
C50.0236 (9)0.0190 (9)0.0176 (8)0.0021 (7)0.0029 (7)0.0012 (7)
C60.0217 (8)0.0140 (9)0.0134 (7)0.0051 (7)0.0010 (6)0.0015 (6)
C70.0193 (8)0.0175 (9)0.0143 (7)0.0010 (7)0.0013 (6)0.0004 (6)
C80.0156 (7)0.0154 (9)0.0135 (7)0.0001 (6)0.0003 (6)0.0001 (6)
C90.0154 (7)0.0163 (9)0.0143 (7)0.0008 (6)0.0003 (6)0.0035 (6)
C100.0129 (7)0.0115 (8)0.0153 (7)0.0007 (6)0.0012 (6)0.0017 (6)
C110.0123 (7)0.0132 (8)0.0122 (7)0.0018 (6)0.0013 (5)0.0000 (6)
C120.0121 (7)0.0125 (8)0.0135 (7)0.0013 (6)0.0003 (5)0.0020 (6)
C130.0152 (7)0.0126 (8)0.0162 (8)0.0014 (6)0.0009 (6)0.0004 (6)
C140.0154 (7)0.0125 (8)0.0172 (8)0.0013 (6)0.0008 (6)0.0016 (6)
C150.0145 (8)0.0162 (9)0.0242 (9)0.0035 (7)0.0031 (6)0.0011 (7)
C160.0190 (8)0.0137 (9)0.0312 (9)0.0008 (7)0.0021 (7)0.0000 (7)
C170.0285 (9)0.0186 (10)0.0224 (9)0.0108 (8)0.0003 (7)0.0045 (7)
C180.0155 (7)0.0120 (8)0.0147 (7)0.0009 (6)0.0011 (6)0.0014 (6)
C190.0186 (8)0.0194 (9)0.0191 (8)0.0016 (7)0.0014 (6)0.0061 (7)
C200.0141 (7)0.0173 (9)0.0180 (8)0.0001 (6)0.0020 (6)0.0027 (7)
C210.0238 (9)0.0144 (9)0.0202 (8)0.0068 (7)0.0032 (7)0.0017 (7)
Geometric parameters (Å, º) top
S1—C61.7634 (16)C12—C131.395 (2)
S1—C71.8239 (17)C12—C181.542 (2)
O1—C11.321 (2)C13—H130.9500
O1—H1O0.850 (10)C14—C171.538 (2)
O2—C11.230 (2)C14—C161.538 (2)
O3—C111.3817 (18)C14—C151.542 (2)
O3—H3O0.8400C15—H15A0.9800
N1—C51.337 (2)C15—H15B0.9800
N1—C61.342 (2)C15—H15C0.9800
C1—C21.471 (3)C16—H16A0.9800
C2—C31.394 (2)C16—H16B0.9800
C2—C61.415 (2)C16—H16C0.9800
C3—C41.380 (3)C17—H17A0.9800
C3—H30.9500C17—H17B0.9800
C4—C51.385 (2)C17—H17C0.9800
C4—H40.9500C18—C211.536 (2)
C5—H50.9500C18—C191.540 (2)
C7—C81.505 (2)C18—C201.539 (2)
C7—H7A0.9900C19—H19A0.9800
C7—H7B0.9900C19—H19B0.9800
C8—C91.386 (2)C19—H19C0.9800
C8—C131.387 (2)C20—H20A0.9800
C9—C101.393 (2)C20—H20B0.9800
C9—H90.9500C20—H20C0.9800
C10—C111.414 (2)C21—H21A0.9800
C10—C141.541 (2)C21—H21B0.9800
C11—C121.405 (2)C21—H21C0.9800
C6—S1—C7100.24 (8)C17—C14—C10111.47 (13)
C1—O1—H1O109.8 (18)C16—C14—C10110.37 (13)
C11—O3—H3O126.6C17—C14—C15105.58 (13)
C5—N1—C6118.43 (15)C16—C14—C15110.68 (14)
O2—C1—O1122.91 (17)C10—C14—C15111.98 (14)
O2—C1—C2122.32 (15)C14—C15—H15A109.5
O1—C1—C2114.77 (15)C14—C15—H15B109.5
C3—C2—C6117.92 (17)H15A—C15—H15B109.5
C3—C2—C1120.55 (15)C14—C15—H15C109.5
C6—C2—C1121.54 (15)H15A—C15—H15C109.5
C4—C3—C2120.04 (16)H15B—C15—H15C109.5
C4—C3—H3120.0C14—C16—H16A109.5
C2—C3—H3120.0C14—C16—H16B109.5
C3—C4—C5117.91 (16)H16A—C16—H16B109.5
C3—C4—H4121.0C14—C16—H16C109.5
C5—C4—H4121.0H16A—C16—H16C109.5
N1—C5—C4123.84 (17)H16B—C16—H16C109.5
N1—C5—H5118.1C14—C17—H17A109.5
C4—C5—H5118.1C14—C17—H17B109.5
N1—C6—C2121.87 (15)H17A—C17—H17B109.5
N1—C6—S1115.97 (12)C14—C17—H17C109.5
C2—C6—S1122.16 (14)H17A—C17—H17C109.5
C8—C7—S1107.24 (11)H17B—C17—H17C109.5
C8—C7—H7A110.3C21—C18—C19107.13 (14)
S1—C7—H7A110.3C21—C18—C20106.49 (13)
C8—C7—H7B110.3C19—C18—C20110.50 (13)
S1—C7—H7B110.3C21—C18—C12111.61 (13)
H7A—C7—H7B108.5C19—C18—C12109.74 (13)
C9—C8—C13119.07 (14)C20—C18—C12111.26 (14)
C9—C8—C7120.60 (15)C18—C19—H19A109.5
C13—C8—C7120.31 (15)C18—C19—H19B109.5
C8—C9—C10122.24 (15)H19A—C19—H19B109.5
C8—C9—H9118.9C18—C19—H19C109.5
C10—C9—H9118.9H19A—C19—H19C109.5
C9—C10—C11116.84 (15)H19B—C19—H19C109.5
C9—C10—C14120.15 (14)C18—C20—H20A109.5
C11—C10—C14122.99 (14)C18—C20—H20B109.5
O3—C11—C12116.25 (13)H20A—C20—H20B109.5
O3—C11—C10121.08 (14)C18—C20—H20C109.5
C12—C11—C10122.67 (14)H20A—C20—H20C109.5
C13—C12—C11117.06 (14)H20B—C20—H20C109.5
C13—C12—C18120.13 (14)C18—C21—H21A109.5
C11—C12—C18122.80 (14)C18—C21—H21B109.5
C8—C13—C12122.10 (15)H21A—C21—H21B109.5
C8—C13—H13118.9C18—C21—H21C109.5
C12—C13—H13118.9H21A—C21—H21C109.5
C17—C14—C16106.52 (15)H21B—C21—H21C109.5
O2—C1—C2—C3176.46 (16)C9—C10—C11—O3179.75 (14)
O1—C1—C2—C34.1 (2)C14—C10—C11—O31.8 (2)
O2—C1—C2—C63.6 (3)C9—C10—C11—C120.3 (2)
O1—C1—C2—C6175.85 (15)C14—C10—C11—C12178.16 (15)
C6—C2—C3—C40.1 (2)O3—C11—C12—C13179.46 (13)
C1—C2—C3—C4179.83 (16)C10—C11—C12—C130.5 (2)
C2—C3—C4—C50.1 (3)O3—C11—C12—C181.9 (2)
C6—N1—C5—C40.3 (3)C10—C11—C12—C18178.11 (14)
C3—C4—C5—N10.3 (3)C9—C8—C13—C120.6 (2)
C5—N1—C6—C20.0 (2)C7—C8—C13—C12179.43 (15)
C5—N1—C6—S1179.54 (12)C11—C12—C13—C81.0 (2)
C3—C2—C6—N10.2 (3)C18—C12—C13—C8177.73 (15)
C1—C2—C6—N1179.77 (15)C9—C10—C14—C173.8 (2)
C3—C2—C6—S1179.70 (12)C11—C10—C14—C17177.85 (15)
C1—C2—C6—S10.2 (2)C9—C10—C14—C16114.38 (17)
C7—S1—C6—N11.21 (15)C11—C10—C14—C1664.0 (2)
C7—S1—C6—C2179.23 (14)C9—C10—C14—C15121.83 (16)
C6—S1—C7—C8178.80 (11)C11—C10—C14—C1559.8 (2)
S1—C7—C8—C985.94 (17)C13—C12—C18—C212.6 (2)
S1—C7—C8—C1392.91 (16)C11—C12—C18—C21178.80 (15)
C13—C8—C9—C100.3 (2)C13—C12—C18—C19116.01 (16)
C7—C8—C9—C10178.57 (15)C11—C12—C18—C1962.6 (2)
C8—C9—C10—C110.7 (2)C13—C12—C18—C20121.40 (16)
C8—C9—C10—C14177.77 (15)C11—C12—C18—C2060.00 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1o···O2i0.85 (1)1.79 (1)2.640 (2)179 (3)
Symmetry code: (i) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC21H27NO3S
Mr373.50
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)5.6305 (1), 9.3489 (2), 18.8749 (3)
α, β, γ (°)85.505 (1), 89.453 (1), 87.834 (1)
V3)989.77 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.18
Crystal size (mm)0.25 × 0.15 × 0.05
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.956, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
12688, 4507, 3746
Rint0.028
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.127, 1.18
No. of reflections4507
No. of parameters239
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.75, 0.71

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1o···O2i0.85 (1)1.79 (1)2.640 (2)179 (3)
Symmetry code: (i) x, y+1, z+1.
 

Acknowledgements

We thank the University of Malaya (grant No. FS338/2008A) for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKim, T. H. & Lee, N. (2003). Bull. Kor. Chem. Soc., 24, 1809–1813.  CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUm, S.-I. & Lee, J.-Y. (2005). Dyes Pigm. 64, 93–99.  Web of Science CrossRef CAS Google Scholar
First citationWestrip, S. P. (2008). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds