Download citation
Download citation
link to html
The crystal structure of the title compound, C25H24NO2+·CF3SO3, is stabilized by C—H...O, C—H...F and C—H...π hydrogen bonds, and by O...F [2.94 (1) Å] and O...N [2.87 (1) Å] inter­actions. In the packing of the mol­ecules, acridine groups are either parallel or inclined at an angle of 5.4 (1)°. Similarly, the benzene rings are either parallel or lie at an angle of 72.4 (1)°.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807052002/om2169sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807052002/om2169Isup2.hkl
Contains datablock I

CCDC reference: 667479

Key indicators

  • Single-crystal X-ray study
  • T = 100 K
  • Mean [sigma](C-C) = 0.002 Å
  • R factor = 0.047
  • wR factor = 0.102
  • Data-to-parameter ratio = 21.6

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT412_ALERT_2_B Short Intra XH3 .. XHn H5 .. H28C .. 1.78 Ang. PLAT430_ALERT_2_B Short Inter D...A Contact O17 .. N10 .. 2.87 Ang.
Alert level C PLAT220_ALERT_2_C Large Non-Solvent C Ueq(max)/Ueq(min) ... 3.23 Ratio PLAT222_ALERT_3_C Large Non-Solvent H Ueq(max)/Ueq(min) ... 3.22 Ratio PLAT431_ALERT_2_C Short Inter HL..A Contact F34 .. O32 .. 2.94 Ang.
0 ALERT level A = In general: serious problem 2 ALERT level B = Potentially serious problem 3 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 4 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Phenyl 10-alkylacridinium-9-carboxylates have been successfully applied as chemiluminescent indicators or chemiluminogenic fragments of chemiluminescent labels in assays of biologically and environmentally important entities (Yang et al., 2002; Adamczyk et al., 2004). The reactions of the above-mentioned cations with hydrogen peroxide in alkaline media produce light, and determination of its intensity enables labeled entities or entities present in the medium to be assayed quantitatively at the attomole level (Roda et al., 2003). Our own investigations (Rak et al., 1999) and those of others (Dodeigne et al., 2000; Razawi & McCapra, 2000; Zomer & Jacquemijns, 2001) have revealed that oxidation of these compounds is accompanied by the removal of the phenyl fragment and conversion of the rest of the molecule to electronically excited, light-emitting 10-alkyl-9-acridinones. It may thus be expected that the efficiency of chemiluminescence is affected by changes in the constitution of the phenyl ester fragment. In order to find out whether this is indeed the case investigations were undertaken on phenyl 10-methylacridinium-9-carboxylates differently substituted in the phenyl fragment. Alkyl-substituted representatives of this group of compounds were selected for these investigations principally because it is relatively easy to synthesize them and to influence their structure and features. The structure of 9-(2-methylphenoxycarbonyl-acridinium trifluoromethanesulfonate was described in an earlier report (Sikorski et al., 2006b). Here the crystal structure of the title compound is presented.

Parameters characterizing the geometries of the central acridine ring and the ester fragment are typical of acridine-based derivatives (Meszko et al., 2002; Sikorski et al., 2006a,b). With respective average deviations from planarity of 0.009 and 0.002 Å, the acridine and benzene ring systems in the cation are oriented at 53.7 (1)° to each other (Fig. 1). The carboxyl group is twisted at an angle of 60.6 (1)° relative to the acridine skeleton. The mean planes of the acridine moieties lie either parallel or are inclined at an angle of 5.4 (1)° in the lattice. The benzene rings are either parallel or inclined at an angle of 72.4 (1)°.

All the O atoms and two F atoms of the trifluoromethanesulfonate anions are respectively involved in weak C–H···O and C–H···F hydrogen bonds with cations (Fig. 3). Adjacent cations are linked through C—H···π (phenyl) interactions (Figs. 2 and 3) and N···O (carbonyl) contacts [N10···O17 = 2.87 (1) Å (symmetry code: (vii) x, 1/2 - y, z - 1/2); Fig. 3]. Adjacent anions are linked through O···F contacts [O32···F34 = 2.94 (1) Å (symmetry code: (viii) x, 3/2 - y, z - 1/2); Fig. 2].

All interactions demonstrated were found by PLATON (Spek, 2003). The C–H···O (Bianchi et al., 2004; Steiner, 1999), C–H···F (Bianchi et al., 2004; Lyssenko & Antipin, 2004) and C–H···π (Takahashi et al., 2001) interactions exhibit a hydrogen-bond-type nature. The C–F···O interactions between anions (Allen et al., 1997; Lyssenko & Antipin, 2004) identified as O···F contacts, and also the N···O (carbonyl) contacts between cations (Lee et al., 2003), should be of an attractive nature.

The crystal structure is stabilized by a network of the aforementioned short-range interactions, as well as by long-range electrostatic interactions between ions.

Related literature top

For related literature, see: Adamczyk et al. (2004); Allen et al. (1997); Bianchi et al. (2004); Dodeigne et al. (2000); Lee et al. (2003); Lyssenko & Antipin (2004); Meszko et al. (2002); Rak et al. (1999); Razawi & McCapra (2000); Roda et al. (2003); Sikorski et al. (2006a,b); Steiner (1999); Takahashi et al. (2001); Yang et al. (2002); Zomer & Jacquemijns (2001).

Experimental top

9-(2-Tertbutylphenoxycarbonyl)-10-methylacridinium trifluoromethanesulfonate was synthesized by treatment of 2-tertbutylphenyl acridine-9-carboxylate [obtained in the same way as described elsewhere (Sikorski et al., 2006a)], dissolved in anhydrous dichloromethane, with a fivefold molar excess of methyl trifluoromethanesulfonate, dissolved in the same solvent, under an Ar atmosphere at room temperature for 3 h. The crude salt was purified by repeated precipitation from ethanol-diethyl ether (1/20 v/v) solution (yield 63%). Pale-yellow crystals suitable for X-ray investigations were grown from absolute ethanol (m.p. = 502–504 K).

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C—H distances of 0.95 Å and with Uiso(H) = 1.2Ueq(C), or C—H = 0.98 Å and Uiso(H) = 1.5Ueq(C) for the methyl group.

Structure description top

Phenyl 10-alkylacridinium-9-carboxylates have been successfully applied as chemiluminescent indicators or chemiluminogenic fragments of chemiluminescent labels in assays of biologically and environmentally important entities (Yang et al., 2002; Adamczyk et al., 2004). The reactions of the above-mentioned cations with hydrogen peroxide in alkaline media produce light, and determination of its intensity enables labeled entities or entities present in the medium to be assayed quantitatively at the attomole level (Roda et al., 2003). Our own investigations (Rak et al., 1999) and those of others (Dodeigne et al., 2000; Razawi & McCapra, 2000; Zomer & Jacquemijns, 2001) have revealed that oxidation of these compounds is accompanied by the removal of the phenyl fragment and conversion of the rest of the molecule to electronically excited, light-emitting 10-alkyl-9-acridinones. It may thus be expected that the efficiency of chemiluminescence is affected by changes in the constitution of the phenyl ester fragment. In order to find out whether this is indeed the case investigations were undertaken on phenyl 10-methylacridinium-9-carboxylates differently substituted in the phenyl fragment. Alkyl-substituted representatives of this group of compounds were selected for these investigations principally because it is relatively easy to synthesize them and to influence their structure and features. The structure of 9-(2-methylphenoxycarbonyl-acridinium trifluoromethanesulfonate was described in an earlier report (Sikorski et al., 2006b). Here the crystal structure of the title compound is presented.

Parameters characterizing the geometries of the central acridine ring and the ester fragment are typical of acridine-based derivatives (Meszko et al., 2002; Sikorski et al., 2006a,b). With respective average deviations from planarity of 0.009 and 0.002 Å, the acridine and benzene ring systems in the cation are oriented at 53.7 (1)° to each other (Fig. 1). The carboxyl group is twisted at an angle of 60.6 (1)° relative to the acridine skeleton. The mean planes of the acridine moieties lie either parallel or are inclined at an angle of 5.4 (1)° in the lattice. The benzene rings are either parallel or inclined at an angle of 72.4 (1)°.

All the O atoms and two F atoms of the trifluoromethanesulfonate anions are respectively involved in weak C–H···O and C–H···F hydrogen bonds with cations (Fig. 3). Adjacent cations are linked through C—H···π (phenyl) interactions (Figs. 2 and 3) and N···O (carbonyl) contacts [N10···O17 = 2.87 (1) Å (symmetry code: (vii) x, 1/2 - y, z - 1/2); Fig. 3]. Adjacent anions are linked through O···F contacts [O32···F34 = 2.94 (1) Å (symmetry code: (viii) x, 3/2 - y, z - 1/2); Fig. 2].

All interactions demonstrated were found by PLATON (Spek, 2003). The C–H···O (Bianchi et al., 2004; Steiner, 1999), C–H···F (Bianchi et al., 2004; Lyssenko & Antipin, 2004) and C–H···π (Takahashi et al., 2001) interactions exhibit a hydrogen-bond-type nature. The C–F···O interactions between anions (Allen et al., 1997; Lyssenko & Antipin, 2004) identified as O···F contacts, and also the N···O (carbonyl) contacts between cations (Lee et al., 2003), should be of an attractive nature.

The crystal structure is stabilized by a network of the aforementioned short-range interactions, as well as by long-range electrostatic interactions between ions.

For related literature, see: Adamczyk et al. (2004); Allen et al. (1997); Bianchi et al. (2004); Dodeigne et al. (2000); Lee et al. (2003); Lyssenko & Antipin (2004); Meszko et al. (2002); Rak et al. (1999); Razawi & McCapra (2000); Roda et al. (2003); Sikorski et al. (2006a,b); Steiner (1999); Takahashi et al. (2001); Yang et al. (2002); Zomer & Jacquemijns (2001).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2003); cell refinement: CrysAlis RED (Oxford Diffraction, 2003); data reduction: CrysAlis RED (Oxford Diffraction, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 25% probability level and H atoms are shown as small spheres of arbitrary radii. Cg4 denotes the ring centroid.
[Figure 2] Fig. 2. The arrangement of the ions in the unit cell, viewed approximately along the a axis. The C—H···O and C—H···F interactions, as well as O···F contacts are represented by dashed lines. H atoms not involved in interactions have been omitted. [Symmetry codes: (ii) x, y - 1, z; (iii) x, 1/2 - y, z + 1/2; (iv) x, 3/2 - y, z + 1/2; (viii) x, 3/2 - y, z - 1/2.]
[Figure 3] Fig. 3. The arrangement of the ions of in the unit cell, viewed approximately along the b axis. The C—H···O interactions and N···O contacts are represented by dashed lines, and C—H···π interactions by dotted lines. H atoms not involved in interactions have been omitted. [Symmetry codes: (i) -x, 1 - y, -z; (v) -x, y - 1/2, 1/2 - z; (vi) 1 - x,1 - y,1 - z; (vii) x, 1/2 - y, z - 1/2.]
9-(2-tert-Butylphenoxycarbonyl)-10-methylacridinium trifluoromethanesulfonate top
Crystal data top
C25H24NO2+·CF3O3SF(000) = 1080
Mr = 519.52Dx = 1.397 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 29629 reflections
a = 15.307 (4) Åθ = 3.1–30.0°
b = 13.480 (3) ŵ = 0.19 mm1
c = 12.263 (3) ÅT = 100 K
β = 102.56 (3)°Plate, pale-yellow
V = 2469.8 (10) Å30.50 × 0.40 × 0.07 mm
Z = 4
Data collection top
Kuma KM4 CCD κ-geometry
diffractometer
4774 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.056
Graphite monochromatorθmax = 30.0°, θmin = 3.1°
ω scansh = 2021
29629 measured reflectionsk = 1815
7120 independent reflectionsl = 1716
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0485P)2]
where P = (Fo2 + 2Fc2)/3
7120 reflections(Δ/σ)max = 0.001
329 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.36 e Å3
Crystal data top
C25H24NO2+·CF3O3SV = 2469.8 (10) Å3
Mr = 519.52Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.307 (4) ŵ = 0.19 mm1
b = 13.480 (3) ÅT = 100 K
c = 12.263 (3) Å0.50 × 0.40 × 0.07 mm
β = 102.56 (3)°
Data collection top
Kuma KM4 CCD κ-geometry
diffractometer
4774 reflections with I > 2σ(I)
29629 measured reflectionsRint = 0.056
7120 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.102H-atom parameters constrained
S = 1.00Δρmax = 0.39 e Å3
7120 reflectionsΔρmin = 0.36 e Å3
329 parameters
Special details top

Experimental. no

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.18044 (10)0.44204 (12)0.37019 (13)0.0225 (3)
H10.21530.46940.43710.027*
C20.14022 (10)0.50362 (12)0.28609 (14)0.0257 (4)
H20.14760.57340.29370.031*
C30.08736 (11)0.46260 (13)0.18723 (14)0.0263 (4)
H30.06020.50600.12860.032*
C40.07408 (10)0.36328 (12)0.17317 (13)0.0240 (3)
H40.03730.33830.10630.029*
C50.13276 (11)0.02677 (12)0.31435 (15)0.0275 (4)
H50.09600.00100.24790.033*
C60.17425 (12)0.03608 (13)0.39641 (16)0.0322 (4)
H60.16580.10560.38630.039*
C70.22935 (12)0.00065 (13)0.49580 (15)0.0307 (4)
H70.25760.04610.55160.037*
C80.24223 (11)0.09821 (12)0.51229 (14)0.0254 (4)
H80.27960.12150.57960.030*
C90.21201 (9)0.27061 (11)0.44236 (12)0.0180 (3)
N100.10445 (8)0.19637 (9)0.24688 (11)0.0203 (3)
C110.17080 (10)0.33657 (11)0.35902 (12)0.0190 (3)
C120.11555 (10)0.29719 (11)0.25893 (13)0.0199 (3)
C130.20006 (10)0.16768 (11)0.42931 (13)0.0190 (3)
C140.14451 (10)0.13085 (11)0.32812 (13)0.0200 (3)
C150.26928 (9)0.30738 (11)0.55043 (13)0.0184 (3)
O160.34079 (7)0.35813 (7)0.53231 (8)0.0187 (2)
O170.25354 (7)0.29088 (8)0.64040 (9)0.0262 (3)
C180.40531 (10)0.39120 (11)0.62741 (13)0.0191 (3)
C190.49459 (10)0.36474 (11)0.63384 (13)0.0228 (3)
C200.55491 (11)0.40454 (13)0.72586 (15)0.0308 (4)
H200.61680.38980.73500.037*
C210.52788 (12)0.46475 (13)0.80441 (15)0.0337 (4)
H210.57110.48990.86580.040*
C220.43907 (12)0.48808 (12)0.79388 (14)0.0290 (4)
H220.42060.52910.84770.035*
C230.37686 (11)0.45117 (11)0.70407 (14)0.0234 (3)
H230.31520.46690.69520.028*
C240.52464 (11)0.29761 (12)0.54776 (15)0.0285 (4)
C250.62422 (13)0.27135 (19)0.5846 (2)0.0582 (7)
H25C0.64110.22660.52960.087*
H25B0.63510.23850.65760.087*
H25A0.66010.33210.59000.087*
C260.50849 (15)0.34945 (15)0.43347 (17)0.0466 (5)
H26C0.52630.30510.37880.070*
H26B0.54400.41050.43980.070*
H26A0.44480.36580.40900.070*
C270.47260 (12)0.19901 (12)0.53535 (16)0.0303 (4)
H27C0.50350.15020.49790.045*
H27B0.41200.20980.49080.045*
H27A0.46920.17420.60940.045*
C280.04879 (11)0.15863 (13)0.14064 (14)0.0286 (4)
H28C0.05510.08640.13740.043*
H28B0.06860.18900.07750.043*
H28A0.01410.17550.13680.043*
S290.08377 (3)0.77767 (3)0.14174 (3)0.02144 (10)
O300.04026 (8)0.87134 (8)0.11081 (9)0.0279 (3)
O310.04331 (8)0.69409 (9)0.07621 (10)0.0339 (3)
O320.11069 (8)0.75903 (9)0.26006 (9)0.0312 (3)
C330.19027 (11)0.79272 (12)0.10050 (14)0.0257 (4)
F340.17898 (7)0.80771 (9)0.00912 (9)0.0457 (3)
F350.24265 (7)0.71301 (8)0.12630 (9)0.0428 (3)
F360.23632 (7)0.86934 (8)0.15244 (10)0.0414 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0206 (8)0.0202 (8)0.0250 (8)0.0011 (6)0.0011 (6)0.0019 (6)
C20.0244 (8)0.0203 (8)0.0322 (9)0.0024 (7)0.0057 (7)0.0031 (7)
C30.0228 (8)0.0296 (9)0.0262 (9)0.0053 (7)0.0051 (7)0.0070 (7)
C40.0192 (8)0.0330 (9)0.0190 (8)0.0018 (7)0.0025 (6)0.0003 (7)
C50.0255 (9)0.0235 (9)0.0326 (10)0.0062 (7)0.0047 (7)0.0090 (7)
C60.0364 (10)0.0178 (8)0.0422 (11)0.0036 (7)0.0081 (8)0.0038 (8)
C70.0330 (10)0.0200 (8)0.0379 (10)0.0005 (7)0.0046 (8)0.0036 (8)
C80.0239 (8)0.0218 (8)0.0287 (9)0.0023 (7)0.0018 (7)0.0004 (7)
C90.0143 (7)0.0209 (8)0.0192 (7)0.0009 (6)0.0044 (5)0.0016 (6)
N100.0160 (6)0.0232 (7)0.0212 (7)0.0008 (5)0.0032 (5)0.0061 (5)
C110.0167 (7)0.0202 (8)0.0205 (8)0.0010 (6)0.0052 (6)0.0016 (6)
C120.0145 (7)0.0244 (8)0.0212 (8)0.0014 (6)0.0049 (6)0.0019 (6)
C130.0157 (7)0.0194 (8)0.0227 (8)0.0014 (6)0.0057 (6)0.0013 (6)
C140.0152 (7)0.0216 (8)0.0244 (8)0.0017 (6)0.0068 (6)0.0039 (7)
C150.0151 (7)0.0159 (7)0.0237 (8)0.0006 (6)0.0032 (6)0.0001 (6)
O160.0175 (5)0.0184 (5)0.0193 (5)0.0034 (4)0.0018 (4)0.0000 (4)
O170.0259 (6)0.0309 (6)0.0227 (6)0.0077 (5)0.0068 (5)0.0016 (5)
C180.0198 (8)0.0140 (7)0.0210 (8)0.0048 (6)0.0013 (6)0.0024 (6)
C190.0208 (8)0.0201 (8)0.0271 (8)0.0020 (6)0.0037 (6)0.0032 (7)
C200.0207 (8)0.0281 (9)0.0396 (10)0.0019 (7)0.0023 (7)0.0015 (8)
C210.0331 (10)0.0282 (10)0.0328 (10)0.0073 (8)0.0081 (8)0.0024 (8)
C220.0367 (10)0.0216 (9)0.0268 (9)0.0041 (7)0.0029 (7)0.0042 (7)
C230.0224 (8)0.0178 (8)0.0294 (9)0.0008 (6)0.0045 (7)0.0004 (7)
C240.0239 (8)0.0280 (9)0.0354 (10)0.0007 (7)0.0107 (7)0.0005 (7)
C250.0235 (10)0.0716 (16)0.0808 (17)0.0045 (10)0.0139 (10)0.0276 (14)
C260.0683 (15)0.0342 (11)0.0479 (13)0.0014 (10)0.0361 (11)0.0058 (9)
C270.0342 (10)0.0215 (9)0.0373 (10)0.0054 (7)0.0124 (8)0.0002 (7)
C280.0270 (9)0.0296 (9)0.0258 (9)0.0018 (7)0.0014 (7)0.0090 (7)
S290.02347 (19)0.0218 (2)0.01792 (19)0.00431 (16)0.00205 (14)0.00007 (16)
O300.0275 (6)0.0292 (6)0.0258 (6)0.0059 (5)0.0033 (5)0.0017 (5)
O310.0408 (7)0.0270 (6)0.0284 (7)0.0141 (5)0.0043 (5)0.0001 (5)
O320.0380 (7)0.0351 (7)0.0190 (6)0.0063 (5)0.0028 (5)0.0036 (5)
C330.0258 (8)0.0270 (9)0.0234 (8)0.0018 (7)0.0033 (6)0.0023 (7)
F340.0346 (6)0.0779 (9)0.0271 (6)0.0028 (6)0.0124 (5)0.0057 (6)
F350.0349 (6)0.0407 (6)0.0488 (7)0.0174 (5)0.0001 (5)0.0094 (5)
F360.0302 (6)0.0375 (6)0.0564 (7)0.0148 (5)0.0092 (5)0.0106 (5)
Geometric parameters (Å, º) top
C1—C21.362 (2)C19—C201.400 (2)
C1—C111.433 (2)C19—C241.535 (2)
C1—H10.9500C20—C211.390 (3)
C2—C31.416 (2)C20—H200.9500
C2—H20.9500C21—C221.374 (3)
C3—C41.359 (2)C21—H210.9500
C3—H30.9500C22—C231.383 (2)
C4—C121.418 (2)C22—H220.9500
C4—H40.9500C23—H230.9500
C5—C61.362 (2)C24—C251.534 (3)
C5—C141.420 (2)C24—C261.537 (3)
C5—H50.9500C24—C271.540 (2)
C6—C71.406 (3)C25—H25C0.9800
C6—H60.9500C25—H25B0.9800
C7—C81.356 (2)C25—H25A0.9800
C7—H70.9500C26—H26C0.9800
C8—C131.430 (2)C26—H26B0.9800
C8—H80.9500C26—H26A0.9800
C9—C111.397 (2)C27—H27C0.9800
C9—C131.404 (2)C27—H27B0.9800
C9—C151.505 (2)C27—H27A0.9800
N10—C141.372 (2)C28—H28C0.9800
N10—C121.374 (2)C28—H28B0.9800
N10—C281.483 (2)C28—H28A0.9800
C11—C121.433 (2)S29—O301.4395 (12)
C13—C141.432 (2)S29—O321.4416 (12)
C15—O161.3496 (18)S29—O311.4431 (12)
C15—O171.2001 (18)S29—C331.8202 (17)
O16—C181.4259 (18)C33—F361.3319 (19)
C18—C231.380 (2)C33—F341.3330 (19)
C18—C191.398 (2)C33—F351.3369 (19)
C2—C1—C11120.80 (15)C21—C20—H20118.7
C2—C1—H1119.6C19—C20—H20118.7
C11—C1—H1119.6C22—C21—C20120.42 (16)
C1—C2—C3119.37 (15)C22—C21—H21119.8
C1—C2—H2120.3C20—C21—H21119.8
C3—C2—H2120.3C21—C22—C23119.25 (16)
C4—C3—C2122.35 (15)C21—C22—H22120.4
C4—C3—H3118.8C23—C22—H22120.4
C2—C3—H3118.8C18—C23—C22119.25 (15)
C3—C4—C12119.61 (15)C18—C23—H23120.4
C3—C4—H4120.2C22—C23—H23120.4
C12—C4—H4120.2C25—C24—C19111.16 (15)
C6—C5—C14120.00 (16)C25—C24—C26109.00 (17)
C6—C5—H5120.0C19—C24—C26110.26 (14)
C14—C5—H5120.0C25—C24—C27106.82 (15)
C5—C6—C7121.63 (16)C19—C24—C27110.54 (13)
C5—C6—H6119.2C26—C24—C27108.97 (15)
C7—C6—H6119.2C24—C25—H25C109.5
C8—C7—C6120.23 (16)C24—C25—H25B109.5
C8—C7—H7119.9H25C—C25—H25B109.5
C6—C7—H7119.9C24—C25—H25A109.5
C7—C8—C13120.61 (16)H25C—C25—H25A109.5
C7—C8—H8119.7H25B—C25—H25A109.5
C13—C8—H8119.7C24—C26—H26C109.5
C11—C9—C13121.23 (14)C24—C26—H26B109.5
C11—C9—C15121.22 (13)H26C—C26—H26B109.5
C13—C9—C15117.54 (13)C24—C26—H26A109.5
C14—N10—C12122.24 (13)H26C—C26—H26A109.5
C14—N10—C28119.84 (13)H26B—C26—H26A109.5
C12—N10—C28117.90 (13)C24—C27—H27C109.5
C9—C11—C12118.65 (14)C24—C27—H27B109.5
C9—C11—C1122.73 (14)H27C—C27—H27B109.5
C12—C11—C1118.61 (14)C24—C27—H27A109.5
N10—C12—C4121.11 (14)H27C—C27—H27A109.5
N10—C12—C11119.66 (14)H27B—C27—H27A109.5
C4—C12—C11119.22 (14)N10—C28—H28C109.5
C9—C13—C8122.60 (14)N10—C28—H28B109.5
C9—C13—C14118.65 (14)H28C—C28—H28B109.5
C8—C13—C14118.74 (14)N10—C28—H28A109.5
N10—C14—C5121.64 (14)H28C—C28—H28A109.5
N10—C14—C13119.56 (13)H28B—C28—H28A109.5
C5—C14—C13118.80 (14)O30—S29—O32115.64 (7)
O17—C15—O16125.27 (14)O30—S29—O31114.84 (7)
C9—C15—O16111.10 (13)O32—S29—O31114.74 (7)
C9—C15—O17123.61 (13)O30—S29—C33102.71 (7)
C15—O16—C18117.78 (11)O32—S29—C33102.82 (8)
C23—C18—C19124.09 (14)O31—S29—C33103.54 (8)
C23—C18—O16118.38 (13)F36—C33—F34107.68 (14)
C19—C18—O16117.45 (14)F36—C33—F35106.40 (13)
C18—C19—C20114.39 (15)F34—C33—F35107.46 (13)
C18—C19—C24123.17 (14)F36—C33—S29111.49 (11)
C20—C19—C24122.44 (15)F34—C33—S29111.69 (11)
C21—C20—C19122.61 (16)F35—C33—S29111.84 (12)
C11—C1—C2—C30.8 (2)C9—C13—C14—C5179.59 (14)
C1—C2—C3—C40.8 (2)C8—C13—C14—C50.5 (2)
C2—C3—C4—C121.2 (2)C11—C9—C15—O17119.85 (17)
C14—C5—C6—C70.1 (3)C13—C9—C15—O1758.9 (2)
C5—C6—C7—C80.2 (3)C11—C9—C15—O1661.87 (17)
C6—C7—C8—C130.1 (3)C13—C9—C15—O16119.39 (14)
C13—C9—C11—C120.0 (2)O17—C15—O16—C183.0 (2)
C15—C9—C11—C12178.70 (13)C9—C15—O16—C18175.23 (12)
C13—C9—C11—C1179.05 (14)C15—O16—C18—C2356.98 (18)
C15—C9—C11—C10.4 (2)C15—O16—C18—C19126.28 (15)
C2—C1—C11—C9178.95 (15)C23—C18—C19—C200.1 (2)
C2—C1—C11—C122.0 (2)O16—C18—C19—C20176.40 (13)
C14—N10—C12—C4179.37 (14)C23—C18—C19—C24179.78 (15)
C28—N10—C12—C40.9 (2)O16—C18—C19—C243.7 (2)
C14—N10—C12—C110.2 (2)C18—C19—C20—C210.4 (2)
C28—N10—C12—C11178.30 (13)C24—C19—C20—C21179.52 (16)
C3—C4—C12—N10179.19 (14)C19—C20—C21—C220.3 (3)
C3—C4—C12—C110.0 (2)C20—C21—C22—C230.2 (3)
C9—C11—C12—N100.1 (2)C19—C18—C23—C220.3 (2)
C1—C11—C12—N10179.23 (13)O16—C18—C23—C22176.77 (13)
C9—C11—C12—C4179.34 (13)C21—C22—C23—C180.4 (2)
C1—C11—C12—C41.6 (2)C18—C19—C24—C25172.91 (17)
C11—C9—C13—C8179.12 (14)C20—C19—C24—C257.0 (2)
C15—C9—C13—C82.1 (2)C18—C19—C24—C2666.1 (2)
C11—C9—C13—C140.1 (2)C20—C19—C24—C26113.99 (19)
C15—C9—C13—C14178.85 (13)C18—C19—C24—C2754.5 (2)
C7—C8—C13—C9179.48 (15)C20—C19—C24—C27125.45 (17)
C7—C8—C13—C140.5 (2)O30—S29—C33—F3658.93 (13)
C12—N10—C14—C5179.72 (14)O32—S29—C33—F3661.49 (13)
C28—N10—C14—C51.3 (2)O31—S29—C33—F36178.76 (11)
C12—N10—C14—C130.1 (2)O30—S29—C33—F3461.59 (13)
C28—N10—C14—C13178.38 (13)O32—S29—C33—F34177.99 (12)
C6—C5—C14—N10179.41 (15)O31—S29—C33—F3458.23 (13)
C6—C5—C14—C130.2 (2)O30—S29—C33—F35177.92 (11)
C9—C13—C14—N100.1 (2)O32—S29—C33—F3557.51 (12)
C8—C13—C14—N10179.12 (13)O31—S29—C33—F3562.25 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O320.952.583.478 (2)158
C4—H4···O31i0.952.353.285 (2)168
C5—H5···O30ii0.952.453.330 (2)155
C6—H6···O32ii0.952.423.265 (2)148
C7—H7···F35iii0.952.463.264 (2)143
C23—H23···F36iv0.952.523.208 (2)130
C28—H28A···O32v0.982.423.251 (2)142
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z; (iii) x, y+1/2, z+1/2; (iv) x, y+3/2, z+1/2; (v) x, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC25H24NO2+·CF3O3S
Mr519.52
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)15.307 (4), 13.480 (3), 12.263 (3)
β (°) 102.56 (3)
V3)2469.8 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.19
Crystal size (mm)0.50 × 0.40 × 0.07
Data collection
DiffractometerKuma KM4 CCD κ-geometry
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
29629, 7120, 4774
Rint0.056
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.102, 1.00
No. of reflections7120
No. of parameters329
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.36

Computer programs: CrysAlis CCD (Oxford Diffraction, 2003), CrysAlis RED (Oxford Diffraction, 2003), SHELXS97 (Sheldrick, 1997), ORTEPII (Johnson, 1976), SHELXL97 (Sheldrick, 1997) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O320.952.583.478 (2)158
C4—H4···O31i0.952.353.285 (2)168
C5—H5···O30ii0.952.453.330 (2)155
C6—H6···O32ii0.952.423.265 (2)148
C7—H7···F35iii0.952.463.264 (2)143
C23—H23···F36iv0.952.523.208 (2)130
C28—H28A···O32v0.982.423.251 (2)142
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z; (iii) x, y+1/2, z+1/2; (iv) x, y+3/2, z+1/2; (v) x, y1/2, z+1/2.
C—H···π interactions (Å,°). top
XHJH···JX···JX-H···J
C26H26BCg4vi2.875 (2)3.579 (2)129.46
Symmetry codes: (vi) 1-x, 1-y, 1-z.

Notes: Cg4 is the centroid of the C19–C23 ring .
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds