Download citation
Download citation
link to html
The new ternary inter­metallic title compounds, namely trilanthanum undeca­(zinc/magnesium), La3(Zn0.874Mg0.126)11, (I), and tricerium undeca­(zinc/magnesium), Ce3(Zn0.863Mg0.137)11, (II), are isostructural and crystallize in the ortho­rhom­bic La3Al11 structure type. These three phases belong to the same structural family, the representative members of which may be derived from the tetra­gonal BaAl4 structure type by a combination of inter­nal deformation and multiple substitution. Compared to the structure of La3Al11, in (I), a significant decrease of 11.9% in the unit-cell b axis and an increase in the other two directions, of 3.6% along a and 5.2% along c, are observed. Such an atypical deformation is caused by the closer packing of atoms in the unit cell due to atom shifts that reflect strengthening of metallic-type bonding. This structural change is also manifested in a significant difference in the coordination around the smaller atoms at the 8l Wyckoff position (site symmetry m). The Al atom in La3Al11 is in a tricapped trigonal prismatic environment (coordination number 9), while the Zn atoms in (I) and (II) are situated in a tetra­gonal anti­prism with two added atoms (coordination number 10).

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270110002556/sq3225sup1.cif
Contains datablocks I, II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270110002556/sq3225Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270110002556/sq3225IIsup3.hkl
Contains datablock II

Comment top

Recently, intermetallic compounds containing rare earths, transition metals and magnesium have been of particular interest to researchers in relation to their useful properties as modern lightweight alloys and hydrogen-storage materials. The crystal structures, physical properties and hydrogenation behaviour of these materials have been reviewed by Rodewald et al. (2007). Until now, the most heavily studied intermetallic compounds in this class have been those with transition metals such as Ni and Cu. Only one ternary compound, i.e. La2Mg3Zn3 (cubic, a = 7.145 Å), was investigated from the La–Mg–Zn ternary system (Melnik, Kinzhibalo et al., 1978). The Ce–Mg–Zn ternary system was first reported by Melnik, Kostina et al. (1978), and the isothermal section of the phase diagram was constructed partially up to 60 at.% of Zn and 50 at.% of Ce at 573 K. Four new ternary compounds with preliminary compositions CeMg7Zn12, Ce(Mg0.5–0.85Zn0.5–0.15)9, CeMg3Zn5 and Ce2Mg3Zn3 were reported in this region. The last compound was found to crystallize with a cubic unit cell (a = 7.064 Å), whereas the crystal structures of the first three compounds remain unknown. We decided to explore the rest of the phase diagram starting from the Zn-rich region. During the investigation of the Ce–Mg–Zn phase diagram in the Zn-rich concentration range, several ternary phases were found. In our previous papers, the crystal structures of CeMgZn2 (Pavlyuk et al., 2007) and Ce20Mg19Zn81 (Pavlyuk et al., 2008) were reported, and it was found that the CeMgZn2 ternary phase [structure type of MnCu2Al, cubic, cF16, a = 7.0358 (4) Å] belongs to a numerous family of Heusler-type structures, which are an ordered variant of the BiF3 cubic structure type, while the ternary compound Ce20Mg19Zn81 crystallizes with a large cubic unit cell [space group F43 m, a = 21.1979 (8) Å] and represents a new type of structure. The results of crystallographic studies of two further intermetallic compounds, i.e. La3(Zn0.874Mg0.126)11, (I), and Ce3(Zn0.863Mg0.137)11, (II), are presented here.

The title compounds crystallize with the orthorhombic La3Al11 structure type (space group Immm) with 28 atoms per unit cell. The formation of compounds with this structure type is typical for the R3Al11 (Buschow & Van Vucht, 1967) and R3Zn11 (Bruzzone et al., 1970) binary intermetallics (R = rare earth), and for the ternary compounds in the following systems: R–Ag–Al, R–Cu–Al (Stel'makhovych et al., 2000), RT–Ga (T = Cu, Ag, Au, Pd, Pt, Rh, Ir) (Grin et al., 1993) and Yb–Zn–Al (Fornasini et al., 2005). The shortest interatomic distances in (I) and (II) are in the ranges typical for intermetallic compounds containing La (or Ce), Mg and Zn, and indicate metallic-type bonding. The projection of the unit cell and coordination polyhedra of the atoms are shown in Fig. 1. The number of neighbour atoms correlates well with the dimensions of the central atoms. The largest La or Ce atoms are enclosed in 17- and 18-vertex polyhedra that can be treated as distorted pseudo Frank–Kasper polyhedra. The statistical mixture of (Zn/Mg)6 is characterized by the monocapped cuboctahedron polyhedra having the coordination number (CN) of 13. The statistical mixture of (Zn/Mg)5 and the Zn3 atom are surrounded by 12 neighbours in the form of distorted cuboctahedra (CN =12), while the atomic environment of the Zn4 atom is a bicapped tetragonal antiprism (CN 8 + 2).

Although the isostructural compounds (I) and (II) are very similar to the La3Al11 structure type in terms of having the same space group, the same Wyckoff positions and similar lattice parameters, these two compounds cannot be treated as isostructural with it. Comparing the structure of (I) with that of La3Al11 (Gomes de Mesquita & Buschow, 1967) we observe a significant decrease in the unit-cell dimension along the b axis of 11.9% [b = 10.132 (7) Å for La3Al11 and b = 9.0514 (8) Å for (I)], while the dimensions in the two other directions increase by 3.6% [a = 4.431 (5) Å for La3Al11 and a = 4.5992 (4) Å for (I)] and 5.2% [c = 13.142 (10) Å for La3Al11 and c = 13.8635 (11) Å for (I)]. This atypical deformation of the unit cell at the transition from the structure type La3Al11 to (I) cannot be associated only with the geometric factor of the difference in atomic radius of Al (r = 1.43 Å) and Zn (r = 1.38 Å) (Slater, 1964). The relative reduction of the radius in this case is only 3.5%. Rather, the reason for this atypical deformation is closer packing of atoms in the unit cell of (I) caused by shifts in atomic positions resulting from the strengthening of metallic-type bonding. The last assertion is based on the fact that Zn and Mg are still common metal atoms (d- and s-block elements, respectively), while Al has electronic nature as a p-block element, though with metal properties. Thus, bonding between the d electrons of the La atom and d electrons of the Zn atom (or bonding between the d electrons of the La atom and s electrons of the Mg atom) in structure (I) is stronger than bonding between the d electrons of the La atom and p electrons of the Al atom in the La3Al11 structure type.

A detailed crystal chemical analysis shows that in the case of the La3Al11 structure, the Al2 atom has the coordination polyhedron of a trigonal prism with three additional capping atoms (CN = 9), while in the La3(Zn0.874Mg0.126)11 and Ce3(Zn0.863Mg0.137)11 structures the Zn4 atom (which occupies the same 8l Wyckoff position as Al2 in La3Al11) has the coordination polyhedron of a tetragonal antiprism with two added atoms (CN = 10) (Fig. 2). Significant deformation in the direction of the b-cell axis and shifts of atoms in the same direction cause the observed changes in the coordination polyhedra. In fact, there is a close relationship between the tetragonal antiprism (CN = 8), in the ideal case, and trigonal prism with two additional atoms (CN = 6 + 2) (Fig. 2a). Transformation of the tetragonal antiprism to trigonal prism with two additional capping atoms is due only to the shifts of two atoms of a square face, which is bent forming two triangular faces. The same method of transformation of the 8l coordination polyhedron occurs at the transition between La3(Zn0.874Mg0.126)11 (Fig. 2b) and La3Al11 (Fig. 2c). The Al2—La2 distance in the La3Al11 structure is large (3.7382 Å), and thus the La2 atom does not belong to the Al2 polyhedron. By contrast, in the La3(Zn0.874Mg0.126)11 structure (and also in the Ce analogue), the distance between the corresponding atoms, i.e. betwen Zn4 and La2, is much smaller [3.3198 (10) Å] causing atom La2 to belong to the Zn4 polyhedron. As a result of these differences the title compounds and La3Al11 belong to different structural classes in the classification scheme of Krypyakevich (1977). La3(Zn0.874Mg0.126)11 and Ce3(Zn0.863Mg0.137)11 belong to class 9 (tetragonal antiprism as a coordination polyhedron), while La3Al11 belongs to class 10 (trigonal prism as a coordination polyhedron).

If we compare the known Al-containing compounds from systems R–Ag–Al, R–Cu–Al (Stel'makhovych et al., 2000) with the structure of La3Al11, we do not observe this atypical deformation. For these ternary compounds it is observed that the decrease in the unit-cell dimension along the b axis is in the range 1.19–3.21% for 3(CuAl)11 and 0.51–1.58% for R3(AgAl)11 depending on the rare earth element (R). By contrast, in the binary compounds R3Zn11 (Bruzzone et al., 1970), the decrease in the unit-cell dimension along the b axis is in the range 11.61–12.90% depending on R. Solid evidence that this anomaly is characteristic only for compounds containing Zn is obtained by comparing our results with data for compounds that contain Ga instead of Al (i.e. from systems RT–Ga where T = Cu, Ag, Au, Pd, Pt, Rh, Ir; Grin et al., 1993). The atomic radius of Ga (r = 1.35 Å) (Slater, 1964) is very close to the radius of Zn (r = 1.38 Å), but the b axis in the Ga-containing compounds is larger than that in the Zn-containing compounds by an average of 5%. This is entirely inconsistent with the geometric factor (radius) and supports our assumption that the structural deformation is driven by closer packing in the Zn-containing structure caused by strengthening of metallic-type bonding in consequence of changes in the electronic nature of the element.

The crystal structures of the title compounds are also closely related to the tetragonal BaAl4 (space group I4/mmm; Andress & Alberti, 1935) and orthorhombic LaAl4 (space group Imm2; Zalutskii & Krypyakevych, 1967) structural types, i.e. types adopted by the binary rare earth compounds RAl4 (R = La, Ce, Pr, Nd). In these structures the rare earth atoms are embedded in the three-dimensional networks, which are formed by the smaller metal atoms (Fig. 3). The primary fragment of such networks has the composition [RM18]. For example, in the BaAl4 structure each Ba atom is surrounded by 18 Al atoms. Further, the structural [RM18] fragment is connected with the six other identical fragments. The structures of La3(Zn0.874Mg0.126)11 and Ce3(Zn0.863Mg0.137)11 also contain the analogous [RM18] fragments and each of them is connected with six fragments containing 16 smaller atoms [RM16]. The [RM16] fragment type can be derived from the [RM18] fragment by internal deformation and multiple substitutions (Fig. 4).

Related literature top

For related literature, see: Andress & Alberti (1935); Bruzzone et al. (1970); Buschow & Van Vucht (1967); Farrugia (1999); Fornasini et al. (2005); Grin et al. (1993); Krypyakevich (1977); Melnik, Kinzhibalo, Padezhnova & Dobatkina (1978); Melnik, Kostina, Yarmolyuk & Zmiy (1978); Pavlyuk et al. (2007, 2008); Stel'makhovych, Gumeniuk & Kuz'ma (2000); Zalutskii & Krypyakevych (1967).

Experimental top

La, Ce, Mg and Zn, all with a nominal purity more than 99.9 wt%, were used as starting elements. First, the powders of the pure metals with a stoichiometry La or Ce:Mg:Zn = 2:1:7 were pressed into pellets, enclosed in an evacuated silica ampoule (internal pressure 10-5–10 -6 Pa) and placed in a resistance furnace with a thermocouple controller. The heating rate from room temperature to 670 K was 5 K min-1. The alloys were kept at this temperature over 2 d and then the temperature was increased from 673 [670?] to 1073 K over 6 d. Then, the alloys were annealed at this temperature for 4 h and slowly cooled to room temperature. In the second step, the pellets were remelted in an arc furnace under argon atmosphere at least three times in order to ensure homogeneity. After the melting procedures, the total weight loss was less than 2%. The brittle samples were stable in air showing a metallic lustre. Wavelength dispersive spectrometry and electron-probe microanalysis (CAMECA SX100 analyser) were used to control the number of phases and their content in the samples. Various point analyses on this phase were in good agreement with the ideal composition determined by the single-crystal X-ray data (an average result for the titled compounds is 21.4 at.% La, 9.9 at.% Mg and 68.7 at.% Zn for (I) and 21.3 at.% Ce, 10.1 at.% Mg and 68.6 at.% Zn for (II). Tabular-shaped single crystals, exhibiting metallic lustre, were isolated by mechanical fragmentation from the alloys.

Refinement top

A statistical test of the distribution of the E values using the program E-STATS from the WinGX system (Farrugia, 1999) suggested that the structure is centrosymmetric. The analysis of systematic extinctions yielded the space group Immm (No. 71), and it was confirmed by the following structure refinement. The structure was solved by direct methods. The rare earth atoms were located in the Wyckoff sites 2a and 4i. The Zn3 and Zn4 atoms were localized in the two 8l Wyckoff sites. The Zn5 and Zn6 atoms in the 4h and 2d Wyckoff sites, respectively, showed displacement parameters which differ considerably from those of the Zn atoms in the other sites. This suggested that, in addition to Zn, these positions are partially occupied by the Mg atoms. In (I), the 2d site is occupied by 0.393 (15) Mg and 0.607 (15) Zn, and 4h site is occupied by 0.495 (10) Mg and 0.505 (10) Zn. In (II), the 2d site is occupied by 0.378 (13) Mg and 0.622 (13) Zn, and the 4h site is occupied by 0.484 (10) Mg and 0.516 (10) Zn. In the final refinement cycles, the isotropic displacement parameters for the (ZnMg) statistical mixtures in the 4h and 2d Wyckoff sites were refined. All other atoms were successfully refined with anisotropic thermal displacement parameters. The positional and Uij parameters for the (ZnMg) statistical mixtures were equated using the EXYZ and EADP constraints. The atomic coordinates were standardized using the STRUCTURE TIDY program (Gelato & Parthé, 1987).

Computing details top

For both compounds, data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The clinographic projection of the R3(ZnMg)11 (R = La or Ce) unit-cell contents and coordination polyhedra of atoms.
[Figure 2] Fig. 2. (a) Scheme of transformation of the tetragonal antiprism to trigonal prism with two added atoms . (b) Coordination polyhedra for Zn4 atom in La3(Zn0.874Mg0.126)11 and (c) for Al2 in La3Al11. The La—Al2 and La—Zn4 distances are denoted by dashed lines. The atoms shifts are denoted by arrows.
[Figure 3] Fig. 3. Crystallographic relations between R3(ZnMg)11 (R = La or Ce), BaAl4 and LaAl4 structures.
[Figure 4] Fig. 4. The transformation of the BaAl4 tetragonal structure to the R3(ZnMg)11 (R = La or Ce) orthorhombic structure by means of deformation and multiple substitutions.
(I) trilanthanum undeca(zinc/magnesium) top
Crystal data top
La3(Zn0.874Mg0.126)11F(000) = 951.6
Mr = 2158.41Dx = 6.210 Mg m3
Orthorhombic, ImmmMo Kα radiation, λ = 0.71073 Å
Hall symbol: -I 2 2Cell parameters from 1821 reflections
a = 4.5992 (4) Åθ = 4.5–26.3°
b = 9.0514 (8) ŵ = 30.42 mm1
c = 13.8635 (11) ÅT = 293 K
V = 577.13 (8) Å3Plate, metallic dark grey
Z = 10.14 × 0.11 × 0.04 mm
Data collection top
Oxford Xcalibur3 CCD area-detector
diffractometer
372 independent reflections
Radiation source: Enhance (Mo) X-ray Source336 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ω scansθmax = 26.3°, θmin = 4.5°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
h = 54
Tmin = 0.031, Tmax = 0.288k = 711
1821 measured reflectionsl = 1716
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023 w = 1/[σ2(Fo2) + (0.0234P)2 + 5.4189P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.051(Δ/σ)max = 0.001
S = 1.11Δρmax = 1.32 e Å3
372 reflectionsΔρmin = 1.08 e Å3
26 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.00054 (15)
Crystal data top
La3(Zn0.874Mg0.126)11V = 577.13 (8) Å3
Mr = 2158.41Z = 1
Orthorhombic, ImmmMo Kα radiation
a = 4.5992 (4) ŵ = 30.42 mm1
b = 9.0514 (8) ÅT = 293 K
c = 13.8635 (11) Å0.14 × 0.11 × 0.04 mm
Data collection top
Oxford Xcalibur3 CCD area-detector
diffractometer
372 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
336 reflections with I > 2σ(I)
Tmin = 0.031, Tmax = 0.288Rint = 0.032
1821 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02326 parameters
wR(F2) = 0.0510 restraints
S = 1.11Δρmax = 1.32 e Å3
372 reflectionsΔρmin = 1.08 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
La10.00000.00000.00000.0191 (3)
La20.00000.00000.29479 (5)0.0119 (2)
Zn30.00000.27987 (11)0.14377 (7)0.0192 (3)
Zn40.00000.35990 (10)0.34095 (7)0.0168 (3)
Mg50.50000.00000.50000.0201 (10)*0.393 (15)
Zn50.50000.00000.50000.0201 (10)*0.607 (15)
Mg60.00000.1891 (2)0.50000.0203 (8)*0.495 (10)
Zn60.00000.1891 (2)0.50000.0203 (8)*0.505 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
La10.0148 (5)0.0286 (5)0.0140 (5)0.0000.0000.000
La20.0091 (3)0.0101 (3)0.0163 (4)0.0000.0000.000
Zn30.0130 (5)0.0158 (5)0.0289 (6)0.0000.0000.0006 (4)
Zn40.0131 (5)0.0127 (5)0.0245 (5)0.0000.0000.0022 (4)
Geometric parameters (Å, º) top
La1—Zn3i3.2233 (10)Zn3—Zn6v3.0561 (7)
La1—Zn33.2233 (10)Zn3—Mg6v3.0561 (7)
La1—Zn3ii3.2233 (10)Zn3—La2v3.1597 (7)
La1—Zn3iii3.2233 (10)Zn3—La2x3.1597 (7)
La1—Zn4iv3.4290 (8)Zn4—Zn4xiii2.5363 (19)
La1—Zn4v3.4290 (8)Zn4—Zn3x2.6332 (7)
La1—Zn4vi3.4290 (8)Zn4—Zn3v2.6332 (7)
La1—Zn4vii3.4290 (8)Zn4—Mg62.6929 (15)
La1—Zn4viii3.4290 (8)Zn4—La2x3.2307 (8)
La1—Zn4ix3.4290 (8)Zn4—La2v3.2307 (8)
La1—Zn4x3.4290 (8)Zn4—La1xiv3.4290 (8)
La1—Zn4xi3.4290 (8)Zn4—La1xv3.4290 (8)
La2—Zn3v3.1597 (7)Mg5—Zn3vi2.8183 (10)
La2—Zn3viii3.1597 (7)Mg5—Zn3xvi2.8183 (10)
La2—Zn3vi3.1597 (7)Mg5—Zn3v2.8183 (10)
La2—Zn3x3.1597 (7)Mg5—Zn3xvii2.8183 (10)
La2—Zn4viii3.2307 (8)Mg5—Zn6xviii2.8667 (12)
La2—Zn4x3.2307 (8)Mg5—Mg6xviii2.8667 (12)
La2—Zn4vi3.2307 (8)Mg5—Zn6xix2.8667 (12)
La2—Zn4v3.2307 (8)Mg5—Mg6xix2.8667 (12)
La2—Zn3iii3.2865 (11)Mg5—Zn6xx2.8667 (12)
La2—Zn33.2865 (11)Mg5—Mg6xx2.8667 (12)
La2—Zn43.3198 (10)Mg5—Mg62.8667 (12)
La2—Zn4iii3.3198 (10)Mg6—Zn4xxi2.6929 (15)
Zn3—Zn4x2.6332 (7)Mg6—Zn5xxii2.8667 (12)
Zn3—Zn4v2.6332 (7)Mg6—Mg5xxii2.8667 (12)
Zn3—Zn5xii2.8183 (10)Mg6—Zn3xvi3.0561 (7)
Zn3—Mg5xii2.8183 (10)Mg6—Zn3x3.0561 (7)
Zn3—Zn42.8280 (14)Mg6—Zn3v3.0561 (7)
Zn3—Zn6x3.0561 (7)Mg6—Zn3xxiii3.0561 (7)
Zn3—Mg6x3.0561 (7)Mg6—La2xviii3.3201 (12)
Zn3i—La1—Zn3180.00 (3)Zn4x—Zn3—La2x69.25 (2)
Zn3i—La1—Zn3ii103.61 (4)Zn4v—Zn3—La2x156.47 (5)
Zn3—La1—Zn3ii76.39 (4)Zn5xii—Zn3—La2x75.22 (2)
Zn3i—La1—Zn3iii76.39 (4)Mg5xii—Zn3—La2x75.22 (2)
Zn3—La1—Zn3iii103.61 (4)Zn4—Zn3—La2x65.03 (2)
Zn3ii—La1—Zn3iii180.00 (4)Zn6x—Zn3—La2x64.55 (3)
Zn3i—La1—Zn4iv46.507 (14)Mg6x—Zn3—La2x64.55 (3)
Zn3—La1—Zn4iv133.493 (14)Zn6v—Zn3—La2x131.72 (5)
Zn3ii—La1—Zn4iv83.86 (2)Mg6v—Zn3—La2x131.72 (5)
Zn3iii—La1—Zn4iv96.14 (2)La2v—Zn3—La2x93.40 (3)
Zn3i—La1—Zn4v133.493 (14)Zn4x—Zn3—La170.86 (3)
Zn3—La1—Zn4v46.507 (14)Zn4v—Zn3—La170.86 (3)
Zn3ii—La1—Zn4v96.14 (2)Zn5xii—Zn3—La196.79 (3)
Zn3iii—La1—Zn4v83.86 (2)Mg5xii—Zn3—La196.79 (3)
Zn4iv—La1—Zn4v180.00 (3)Zn4—Zn3—La1143.04 (4)
Zn3i—La1—Zn4vi96.14 (2)Zn6x—Zn3—La170.67 (4)
Zn3—La1—Zn4vi83.86 (2)Mg6x—Zn3—La170.67 (4)
Zn3ii—La1—Zn4vi133.493 (14)Zn6v—Zn3—La170.67 (4)
Zn3iii—La1—Zn4vi46.507 (14)Mg6v—Zn3—La170.67 (4)
Zn4iv—La1—Zn4vi136.59 (3)La2v—Zn3—La1131.474 (17)
Zn4v—La1—Zn4vi43.41 (3)La2x—Zn3—La1131.473 (17)
Zn3i—La1—Zn4vii83.86 (2)Zn4xiii—Zn4—Zn3x118.71 (3)
Zn3—La1—Zn4vii96.14 (2)Zn4xiii—Zn4—Zn3v118.71 (3)
Zn3ii—La1—Zn4vii46.507 (14)Zn3x—Zn4—Zn3v121.69 (5)
Zn3iii—La1—Zn4vii133.493 (14)Zn4xiii—Zn4—Mg6125.03 (4)
Zn4iv—La1—Zn4vii43.41 (3)Zn3x—Zn4—Mg670.02 (3)
Zn4v—La1—Zn4vii136.59 (3)Zn3v—Zn4—Mg670.02 (3)
Zn4vi—La1—Zn4vii180.00 (3)Zn4xiii—Zn4—Zn3104.84 (3)
Zn3i—La1—Zn4viii96.14 (2)Zn3x—Zn4—Zn387.40 (3)
Zn3—La1—Zn4viii83.86 (2)Zn3v—Zn4—Zn387.40 (3)
Zn3ii—La1—Zn4viii133.493 (14)Mg6—Zn4—Zn3130.13 (6)
Zn3iii—La1—Zn4viii46.507 (14)Zn4xiii—Zn4—La2x66.889 (16)
Zn4iv—La1—Zn4viii80.04 (3)Zn3x—Zn4—La2x67.28 (2)
Zn4v—La1—Zn4viii99.96 (3)Zn3v—Zn4—La2x148.99 (4)
Zn4vi—La1—Zn4viii84.23 (2)Mg6—Zn4—La2x134.610 (14)
Zn4vii—La1—Zn4viii95.77 (2)Zn3—Zn4—La2x62.45 (2)
Zn3i—La1—Zn4ix46.507 (14)Zn4xiii—Zn4—La2v66.889 (17)
Zn3—La1—Zn4ix133.493 (14)Zn3x—Zn4—La2v148.99 (4)
Zn3ii—La1—Zn4ix83.86 (2)Zn3v—Zn4—La2v67.28 (2)
Zn3iii—La1—Zn4ix96.14 (2)Mg6—Zn4—La2v134.610 (14)
Zn4iv—La1—Zn4ix84.23 (2)Zn3—Zn4—La2v62.45 (2)
Zn4v—La1—Zn4ix95.77 (2)La2x—Zn4—La2v90.76 (3)
Zn4vi—La1—Zn4ix80.04 (3)Zn4xiii—Zn4—La2168.89 (2)
Zn4vii—La1—Zn4ix99.96 (3)Zn3x—Zn4—La262.88 (3)
Zn4viii—La1—Zn4ix136.59 (3)Zn3v—Zn4—La262.88 (3)
Zn3i—La1—Zn4x133.493 (14)Mg6—Zn4—La266.08 (4)
Zn3—La1—Zn4x46.507 (14)Zn3—Zn4—La264.05 (3)
Zn3ii—La1—Zn4x96.14 (2)La2x—Zn4—La2105.84 (2)
Zn3iii—La1—Zn4x83.86 (2)La2v—Zn4—La2105.84 (2)
Zn4iv—La1—Zn4x95.77 (2)Zn4xiii—Zn4—La1xiv68.295 (15)
Zn4v—La1—Zn4x84.23 (2)Zn3x—Zn4—La1xiv135.37 (4)
Zn4vi—La1—Zn4x99.96 (3)Zn3v—Zn4—La1xiv62.63 (2)
Zn4vii—La1—Zn4x80.04 (3)Mg6—Zn4—La1xiv71.69 (3)
Zn4viii—La1—Zn4x43.41 (3)Zn3—Zn4—La1xiv135.751 (15)
Zn4ix—La1—Zn4x180.00 (4)La2x—Zn4—La1xiv134.97 (3)
Zn3i—La1—Zn4xi83.86 (2)La2v—Zn4—La1xiv75.644 (15)
Zn3—La1—Zn4xi96.14 (2)La2—Zn4—La1xiv119.13 (2)
Zn3ii—La1—Zn4xi46.507 (14)Zn4xiii—Zn4—La1xv68.295 (15)
Zn3iii—La1—Zn4xi133.493 (14)Zn3x—Zn4—La1xv62.63 (2)
Zn4iv—La1—Zn4xi99.96 (3)Zn3v—Zn4—La1xv135.37 (4)
Zn4v—La1—Zn4xi80.04 (3)Mg6—Zn4—La1xv71.69 (3)
Zn4vi—La1—Zn4xi95.77 (2)Zn3—Zn4—La1xv135.751 (15)
Zn4vii—La1—Zn4xi84.23 (2)La2x—Zn4—La1xv75.644 (15)
Zn4viii—La1—Zn4xi180.00 (3)La2v—Zn4—La1xv134.97 (3)
Zn4ix—La1—Zn4xi43.41 (3)La2—Zn4—La1xv119.13 (2)
Zn4x—La1—Zn4xi136.59 (3)La1xiv—Zn4—La1xv84.23 (2)
Zn3v—La2—Zn3viii148.72 (4)Zn3vi—Mg5—Zn3xvi180.0
Zn3v—La2—Zn3vi78.19 (3)Zn3vi—Mg5—Zn3v89.98 (4)
Zn3viii—La2—Zn3vi93.40 (3)Zn3xvi—Mg5—Zn3v90.02 (4)
Zn3v—La2—Zn3x93.40 (3)Zn3vi—Mg5—Zn3xvii90.02 (4)
Zn3viii—La2—Zn3x78.19 (3)Zn3xvi—Mg5—Zn3xvii89.98 (4)
Zn3vi—La2—Zn3x148.72 (4)Zn3v—Mg5—Zn3xvii180.0
Zn3v—La2—Zn4viii157.31 (3)Zn3vi—Mg5—Zn6xviii65.03 (2)
Zn3viii—La2—Zn4viii52.52 (2)Zn3xvi—Mg5—Zn6xviii114.97 (2)
Zn3vi—La2—Zn4viii115.31 (2)Zn3v—Mg5—Zn6xviii114.97 (2)
Zn3x—La2—Zn4viii83.48 (2)Zn3xvii—Mg5—Zn6xviii65.03 (2)
Zn3v—La2—Zn4x115.31 (2)Zn3vi—Mg5—Mg6xviii65.03 (2)
Zn3viii—La2—Zn4x83.48 (2)Zn3xvi—Mg5—Mg6xviii114.97 (2)
Zn3vi—La2—Zn4x157.31 (3)Zn3v—Mg5—Mg6xviii114.97 (2)
Zn3x—La2—Zn4x52.52 (2)Zn3xvii—Mg5—Mg6xviii65.03 (2)
Zn4viii—La2—Zn4x46.22 (3)Zn6xviii—Mg5—Mg6xviii0.00 (6)
Zn3v—La2—Zn4vi83.48 (2)Zn3vi—Mg5—Zn6xix114.97 (2)
Zn3viii—La2—Zn4vi115.31 (2)Zn3xvi—Mg5—Zn6xix65.03 (2)
Zn3vi—La2—Zn4vi52.52 (2)Zn3v—Mg5—Zn6xix65.03 (2)
Zn3x—La2—Zn4vi157.31 (3)Zn3xvii—Mg5—Zn6xix114.97 (2)
Zn4viii—La2—Zn4vi90.76 (3)Zn6xviii—Mg5—Zn6xix180.0
Zn4x—La2—Zn4vi108.75 (4)Mg6xviii—Mg5—Zn6xix180.0
Zn3v—La2—Zn4v52.52 (2)Zn3vi—Mg5—Mg6xix114.97 (2)
Zn3viii—La2—Zn4v157.31 (3)Zn3xvi—Mg5—Mg6xix65.03 (2)
Zn3vi—La2—Zn4v83.48 (2)Zn3v—Mg5—Mg6xix65.03 (2)
Zn3x—La2—Zn4v115.31 (2)Zn3xvii—Mg5—Mg6xix114.97 (2)
Zn4viii—La2—Zn4v108.75 (4)Zn6xviii—Mg5—Mg6xix180.0
Zn4x—La2—Zn4v90.76 (3)Mg6xviii—Mg5—Mg6xix180.0
Zn4vi—La2—Zn4v46.22 (3)Zn6xix—Mg5—Mg6xix0.00 (6)
Zn3v—La2—Zn3iii131.132 (14)Zn3vi—Mg5—Zn6xx65.03 (2)
Zn3viii—La2—Zn3iii71.68 (2)Zn3xvi—Mg5—Zn6xx114.97 (2)
Zn3vi—La2—Zn3iii71.68 (2)Zn3v—Mg5—Zn6xx114.97 (2)
Zn3x—La2—Zn3iii131.132 (14)Zn3xvii—Mg5—Zn6xx65.03 (2)
Zn4viii—La2—Zn3iii47.651 (15)Zn6xviii—Mg5—Zn6xx106.68 (6)
Zn4x—La2—Zn3iii86.07 (2)Mg6xviii—Mg5—Zn6xx106.68 (6)
Zn4vi—La2—Zn3iii47.651 (15)Zn6xix—Mg5—Zn6xx73.32 (6)
Zn4v—La2—Zn3iii86.07 (2)Mg6xix—Mg5—Zn6xx73.32 (6)
Zn3v—La2—Zn371.68 (2)Zn3vi—Mg5—Mg6xx65.03 (2)
Zn3viii—La2—Zn3131.132 (14)Zn3xvi—Mg5—Mg6xx114.97 (2)
Zn3vi—La2—Zn3131.132 (14)Zn3v—Mg5—Mg6xx114.97 (2)
Zn3x—La2—Zn371.68 (2)Zn3xvii—Mg5—Mg6xx65.03 (2)
Zn4viii—La2—Zn386.07 (2)Zn6xviii—Mg5—Mg6xx106.68 (6)
Zn4x—La2—Zn347.651 (15)Mg6xviii—Mg5—Mg6xx106.68 (6)
Zn4vi—La2—Zn386.07 (2)Zn6xix—Mg5—Mg6xx73.32 (6)
Zn4v—La2—Zn347.651 (15)Mg6xix—Mg5—Mg6xx73.32 (6)
Zn3iii—La2—Zn3100.85 (4)Zn6xx—Mg5—Mg6xx0.00 (6)
Zn3v—La2—Zn447.877 (14)Zn3vi—Mg5—Mg6114.97 (2)
Zn3viii—La2—Zn4124.53 (2)Zn3xvi—Mg5—Mg665.03 (2)
Zn3vi—La2—Zn4124.53 (2)Zn3v—Mg5—Mg665.03 (2)
Zn3x—La2—Zn447.877 (14)Zn3xvii—Mg5—Mg6114.97 (2)
Zn4viii—La2—Zn4119.83 (2)Zn6xviii—Mg5—Mg673.32 (6)
Zn4x—La2—Zn474.16 (2)Mg6xviii—Mg5—Mg673.32 (6)
Zn4vi—La2—Zn4119.83 (2)Zn6xix—Mg5—Mg6106.68 (6)
Zn4v—La2—Zn474.16 (2)Mg6xix—Mg5—Mg6106.68 (6)
Zn3iii—La2—Zn4151.54 (3)Zn6xx—Mg5—Mg6180.0
Zn3—La2—Zn450.69 (2)Mg6xx—Mg5—Mg6180.0
Zn3v—La2—Zn4iii124.53 (2)Zn4xxi—Mg6—Zn4109.93 (8)
Zn3viii—La2—Zn4iii47.877 (14)Zn4xxi—Mg6—Zn5xxii110.045 (12)
Zn3vi—La2—Zn4iii47.877 (14)Zn4—Mg6—Zn5xxii110.045 (12)
Zn3x—La2—Zn4iii124.53 (2)Zn4xxi—Mg6—Mg5xxii110.045 (12)
Zn4viii—La2—Zn4iii74.16 (2)Zn4—Mg6—Mg5xxii110.045 (12)
Zn4x—La2—Zn4iii119.83 (2)Zn5xxii—Mg6—Mg5xxii0.0
Zn4vi—La2—Zn4iii74.16 (2)Zn4xxi—Mg6—Mg5110.045 (12)
Zn4v—La2—Zn4iii119.83 (2)Zn4—Mg6—Mg5110.045 (12)
Zn3iii—La2—Zn4iii50.69 (2)Zn5xxii—Mg6—Mg5106.68 (6)
Zn3—La2—Zn4iii151.54 (3)Mg5xxii—Mg6—Mg5106.68 (6)
Zn4—La2—Zn4iii157.77 (4)Zn4xxi—Mg6—Zn3xvi54.07 (2)
Zn4x—Zn3—Zn4v121.69 (5)Zn4—Mg6—Zn3xvi118.77 (5)
Zn4x—Zn3—Zn5xii113.36 (3)Zn5xxii—Mg6—Zn3xvi131.18 (5)
Zn4v—Zn3—Zn5xii113.36 (3)Mg5xxii—Mg6—Zn3xvi131.18 (5)
Zn4x—Zn3—Mg5xii113.36 (3)Mg5—Mg6—Zn3xvi56.72 (2)
Zn4v—Zn3—Mg5xii113.36 (3)Zn4xxi—Mg6—Zn3x118.77 (5)
Zn5xii—Zn3—Mg5xii0.0Zn4—Mg6—Zn3x54.07 (2)
Zn4x—Zn3—Zn492.60 (3)Zn5xxii—Mg6—Zn3x56.72 (2)
Zn4v—Zn3—Zn492.60 (3)Mg5xxii—Mg6—Zn3x56.72 (2)
Zn5xii—Zn3—Zn4120.17 (4)Mg5—Mg6—Zn3x131.18 (5)
Mg5xii—Zn3—Zn4120.17 (4)Zn3xvi—Mg6—Zn3x169.46 (8)
Zn4x—Zn3—Zn6x55.91 (3)Zn4xxi—Mg6—Zn3v118.77 (5)
Zn4v—Zn3—Zn6x138.92 (5)Zn4—Mg6—Zn3v54.07 (2)
Zn5xii—Zn3—Zn6x58.25 (3)Zn5xxii—Mg6—Zn3v131.18 (5)
Mg5xii—Zn3—Zn6x58.25 (3)Mg5xxii—Mg6—Zn3v131.18 (5)
Zn4—Zn3—Zn6x127.37 (2)Mg5—Mg6—Zn3v56.72 (2)
Zn4x—Zn3—Mg6x55.91 (3)Zn3xvi—Mg6—Zn3v81.41 (3)
Zn4v—Zn3—Mg6x138.92 (5)Zn3x—Mg6—Zn3v97.61 (3)
Zn5xii—Zn3—Mg6x58.25 (3)Zn4xxi—Mg6—Zn3xxiii54.07 (2)
Mg5xii—Zn3—Mg6x58.25 (3)Zn4—Mg6—Zn3xxiii118.77 (5)
Zn4—Zn3—Mg6x127.37 (2)Zn5xxii—Mg6—Zn3xxiii56.72 (2)
Zn6x—Zn3—Mg6x0.00 (7)Mg5xxii—Mg6—Zn3xxiii56.72 (2)
Zn4x—Zn3—Zn6v138.92 (5)Mg5—Mg6—Zn3xxiii131.18 (5)
Zn4v—Zn3—Zn6v55.91 (3)Zn3xvi—Mg6—Zn3xxiii97.61 (3)
Zn5xii—Zn3—Zn6v58.25 (3)Zn3x—Mg6—Zn3xxiii81.41 (3)
Mg5xii—Zn3—Zn6v58.25 (3)Zn3v—Mg6—Zn3xxiii169.46 (8)
Zn4—Zn3—Zn6v127.37 (2)Zn4xxi—Mg6—La2176.00 (7)
Zn6x—Zn3—Zn6v97.61 (3)Zn4—Mg6—La266.07 (2)
Mg6x—Zn3—Zn6v97.61 (3)Zn5xxii—Mg6—La272.07 (3)
Zn4x—Zn3—Mg6v138.92 (5)Mg5xxii—Mg6—La272.07 (3)
Zn4v—Zn3—Mg6v55.91 (3)Mg5—Mg6—La272.07 (3)
Zn5xii—Zn3—Mg6v58.25 (3)Zn3xvi—Mg6—La2127.32 (4)
Mg5xii—Zn3—Mg6v58.25 (3)Zn3x—Mg6—La259.24 (2)
Zn4—Zn3—Mg6v127.37 (2)Zn3v—Mg6—La259.24 (2)
Zn6x—Zn3—Mg6v97.61 (3)Zn3xxiii—Mg6—La2127.32 (4)
Mg6x—Zn3—Mg6v97.61 (3)Zn4xxi—Mg6—La2xviii66.07 (2)
Zn6v—Zn3—Mg6v0.00 (7)Zn4—Mg6—La2xviii176.00 (7)
Zn4x—Zn3—La2v156.47 (5)Zn5xxii—Mg6—La2xviii72.07 (3)
Zn4v—Zn3—La2v69.25 (2)Mg5xxii—Mg6—La2xviii72.07 (3)
Zn5xii—Zn3—La2v75.22 (2)Mg5—Mg6—La2xviii72.07 (3)
Mg5xii—Zn3—La2v75.22 (2)Zn3xvi—Mg6—La2xviii59.24 (2)
Zn4—Zn3—La2v65.03 (2)Zn3x—Mg6—La2xviii127.32 (4)
Zn6x—Zn3—La2v131.72 (5)Zn3v—Mg6—La2xviii127.32 (4)
Mg6x—Zn3—La2v131.72 (5)Zn3xxiii—Mg6—La2xviii59.24 (2)
Zn6v—Zn3—La2v64.55 (3)La2—Mg6—La2xviii117.93 (6)
Mg6v—Zn3—La2v64.55 (3)
Symmetry codes: (i) x, y, z; (ii) x, y, z; (iii) x, y, z; (iv) x1/2, y1/2, z1/2; (v) x+1/2, y+1/2, z+1/2; (vi) x+1/2, y1/2, z+1/2; (vii) x1/2, y+1/2, z1/2; (viii) x1/2, y1/2, z+1/2; (ix) x+1/2, y1/2, z1/2; (x) x1/2, y+1/2, z+1/2; (xi) x+1/2, y+1/2, z1/2; (xii) x1/2, y+1/2, z1/2; (xiii) x, y+1, z; (xiv) x+1/2, y+1/2, z+1/2; (xv) x1/2, y+1/2, z+1/2; (xvi) x+1/2, y+1/2, z+1/2; (xvii) x+1/2, y1/2, z+1/2; (xviii) x, y, z+1; (xix) x+1, y, z; (xx) x+1, y, z+1; (xxi) x, y, z+1; (xxii) x1, y, z; (xxiii) x1/2, y+1/2, z+1/2.
(II) tricerium undeca(zinc/magnesium) top
Crystal data top
Ce3(Zn0.863Mg0.137)11F(000) = 954.00
Mr = 2155.40Dx = 6.380 Mg m3
Orthorhombic, ImmmMo Kα radiation, λ = 0.71073 Å
Hall symbol: -I 2 2Cell parameters from 1896 reflections
a = 4.5641 (6) Åθ = 4.6–27.5°
b = 8.9542 (14) ŵ = 31.79 mm1
c = 13.7261 (18) ÅT = 293 K
V = 560.96 (14) Å3Plate, metallic dark grey
Z = 10.11 × 0.10 × 0.03 mm
Data collection top
Oxford Xcalibur3 CCD area-detector
diffractometer
395 independent reflections
Radiation source: Enhance (Mo) X-ray Source349 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ω scansθmax = 27.5°, θmin = 4.6°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
h = 55
Tmin = 0.046, Tmax = 0.379k = 711
1896 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022 w = 1/[σ2(Fo2) + (0.0279P)2 + 4.6238P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.051(Δ/σ)max = 0.002
S = 1.00Δρmax = 1.71 e Å3
395 reflectionsΔρmin = 1.41 e Å3
27 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.00044 (15)
Crystal data top
Ce3(Zn0.863Mg0.137)11V = 560.96 (14) Å3
Mr = 2155.40Z = 1
Orthorhombic, ImmmMo Kα radiation
a = 4.5641 (6) ŵ = 31.79 mm1
b = 8.9542 (14) ÅT = 293 K
c = 13.7261 (18) Å0.11 × 0.10 × 0.03 mm
Data collection top
Oxford Xcalibur3 CCD area-detector
diffractometer
395 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
349 reflections with I > 2σ(I)
Tmin = 0.046, Tmax = 0.379Rint = 0.032
1896 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02227 parameters
wR(F2) = 0.0510 restraints
S = 1.00Δρmax = 1.71 e Å3
395 reflectionsΔρmin = 1.41 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ce10.00000.00000.00000.0190 (2)
Ce20.00000.00000.29476 (4)0.0118 (2)
Zn30.00000.27983 (10)0.14375 (7)0.0175 (3)
Zn40.00000.35991 (10)0.34094 (6)0.0151 (2)
Mg50.50000.00000.50000.0194 (9)*0.378 (13)
Zn50.50000.00000.50000.0194 (9)*0.622 (13)
Mg60.00000.1892 (2)0.50000.0191 (7)*0.484 (10)
Zn60.00000.1892 (2)0.50000.0191 (7)*0.516 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ce10.0150 (5)0.0284 (5)0.0136 (4)0.0000.0000.000
Ce20.0093 (3)0.0101 (3)0.0160 (3)0.0000.0000.000
Zn30.0115 (5)0.0142 (4)0.0267 (5)0.0000.0000.0007 (4)
Zn40.0116 (4)0.0111 (4)0.0226 (5)0.0000.0000.0022 (3)
Geometric parameters (Å, º) top
Ce1—Zn3i3.1893 (10)Zn4—Ce1xiv3.3982 (7)
Ce1—Zn33.1893 (10)Zn4—Ce1xv3.3982 (7)
Ce1—Zn3ii3.1893 (10)Mg5—Zn3vii2.7892 (9)
Ce1—Zn3iii3.1893 (10)Mg5—Zn3xvi2.7892 (9)
Ce1—Zn4iv3.3982 (7)Mg5—Zn3iv2.7892 (9)
Ce1—Zn4v3.3982 (7)Mg5—Zn3xvii2.7892 (9)
Ce1—Zn4vi3.3982 (7)Mg5—Zn6xviii2.8421 (11)
Ce1—Zn4vii3.3982 (7)Mg5—Mg6xviii2.8421 (11)
Ce1—Zn4viii3.3982 (7)Mg5—Zn6xix2.8421 (11)
Ce1—Zn4ix3.3982 (7)Mg5—Mg6xix2.8421 (11)
Ce1—Zn4x3.3982 (7)Mg5—Zn6xx2.8421 (11)
Ce1—Zn4xi3.3982 (7)Mg5—Mg6xx2.8421 (11)
Ce2—Zn3iv3.1315 (7)Mg5—Mg62.8421 (11)
Ce2—Zn3xi3.1315 (7)Mg5—Zn62.8421 (11)
Ce2—Zn3vii3.1315 (7)Zn5—Zn3vii2.7892 (9)
Ce2—Zn3ix3.1315 (7)Zn5—Zn3xvi2.7892 (9)
Ce2—Zn4xi3.2017 (7)Zn5—Zn3iv2.7892 (9)
Ce2—Zn4ix3.2017 (7)Zn5—Zn3xvii2.7892 (9)
Ce2—Zn4iv3.2017 (7)Zn5—Zn6xviii2.8421 (11)
Ce2—Zn4vii3.2017 (7)Zn5—Mg6xviii2.8421 (11)
Ce2—Zn3iii3.2519 (10)Zn5—Zn6xix2.8421 (11)
Ce2—Zn33.2519 (10)Zn5—Mg6xix2.8421 (11)
Ce2—Zn43.2845 (10)Zn5—Zn6xx2.8421 (11)
Ce2—Zn4iii3.2845 (10)Zn5—Mg6xx2.8421 (11)
Zn3—Zn4ix2.6111 (7)Zn5—Mg62.8421 (11)
Zn3—Zn4iv2.6111 (7)Zn5—Zn62.8421 (11)
Zn3—Zn5xii2.7892 (9)Mg6—Zn4xxi2.6652 (14)
Zn3—Mg5xii2.7892 (9)Mg6—Zn5xxii2.8421 (11)
Zn3—Zn42.8000 (13)Mg6—Mg5xxii2.8421 (11)
Zn3—Zn6ix3.0295 (7)Mg6—Zn3xvi3.0295 (7)
Zn3—Mg6ix3.0295 (7)Mg6—Zn3ix3.0295 (7)
Zn3—Zn6iv3.0295 (7)Mg6—Zn3xxiii3.0295 (7)
Zn3—Mg6iv3.0295 (7)Mg6—Zn3iv3.0295 (7)
Zn3—Ce2iv3.1315 (7)Mg6—Ce2xviii3.2872 (11)
Zn3—Ce2ix3.1315 (7)Zn6—Zn4xxi2.6652 (14)
Zn4—Zn4xiii2.5088 (18)Zn6—Zn5xxii2.8421 (11)
Zn4—Zn3ix2.6111 (7)Zn6—Mg5xxii2.8421 (11)
Zn4—Zn3iv2.6111 (7)Zn6—Zn3xvi3.0295 (7)
Zn4—Mg62.6652 (14)Zn6—Zn3ix3.0295 (7)
Zn4—Zn62.6652 (14)Zn6—Zn3xxiii3.0295 (7)
Zn4—Ce2ix3.2017 (7)Zn6—Zn3iv3.0295 (7)
Zn4—Ce2iv3.2017 (7)Zn6—Ce2xviii3.2872 (11)
Zn3i—Ce1—Zn3180.00 (3)Zn3vii—Mg5—Zn6xviii65.08 (2)
Zn3i—Ce1—Zn3ii103.56 (3)Zn3xvi—Mg5—Zn6xviii114.92 (2)
Zn3—Ce1—Zn3ii76.44 (3)Zn3iv—Mg5—Zn6xviii114.92 (2)
Zn3i—Ce1—Zn3iii76.44 (3)Zn3xvii—Mg5—Zn6xviii65.08 (2)
Zn3—Ce1—Zn3iii103.56 (3)Zn3vii—Mg5—Mg6xviii65.08 (2)
Zn3ii—Ce1—Zn3iii180.00 (3)Zn3xvi—Mg5—Mg6xviii114.92 (2)
Zn3i—Ce1—Zn4iv133.432 (14)Zn3iv—Mg5—Mg6xviii114.92 (2)
Zn3—Ce1—Zn4iv46.568 (14)Zn3xvii—Mg5—Mg6xviii65.08 (2)
Zn3ii—Ce1—Zn4iv96.17 (2)Zn6xviii—Mg5—Mg6xviii0.00 (6)
Zn3iii—Ce1—Zn4iv83.83 (2)Zn3vii—Mg5—Zn6xix114.92 (2)
Zn3i—Ce1—Zn4v46.568 (13)Zn3xvi—Mg5—Zn6xix65.08 (2)
Zn3—Ce1—Zn4v133.432 (14)Zn3iv—Mg5—Zn6xix65.08 (2)
Zn3ii—Ce1—Zn4v83.83 (2)Zn3xvii—Mg5—Zn6xix114.92 (2)
Zn3iii—Ce1—Zn4v96.17 (2)Zn6xviii—Mg5—Zn6xix180.0
Zn4iv—Ce1—Zn4v180.00 (2)Mg6xviii—Mg5—Zn6xix180.0
Zn3i—Ce1—Zn4vi83.83 (2)Zn3vii—Mg5—Mg6xix114.92 (2)
Zn3—Ce1—Zn4vi96.17 (2)Zn3xvi—Mg5—Mg6xix65.08 (2)
Zn3ii—Ce1—Zn4vi46.568 (14)Zn3iv—Mg5—Mg6xix65.08 (2)
Zn3iii—Ce1—Zn4vi133.432 (14)Zn3xvii—Mg5—Mg6xix114.92 (2)
Zn4iv—Ce1—Zn4vi136.68 (3)Zn6xviii—Mg5—Mg6xix180.0
Zn4v—Ce1—Zn4vi43.32 (3)Mg6xviii—Mg5—Mg6xix180.0
Zn3i—Ce1—Zn4vii96.17 (2)Zn6xix—Mg5—Mg6xix0.00 (6)
Zn3—Ce1—Zn4vii83.83 (2)Zn3vii—Mg5—Zn6xx65.08 (2)
Zn3ii—Ce1—Zn4vii133.432 (14)Zn3xvi—Mg5—Zn6xx114.92 (2)
Zn3iii—Ce1—Zn4vii46.568 (14)Zn3iv—Mg5—Zn6xx114.92 (2)
Zn4iv—Ce1—Zn4vii43.32 (3)Zn3xvii—Mg5—Zn6xx65.08 (2)
Zn4v—Ce1—Zn4vii136.68 (3)Zn6xviii—Mg5—Zn6xx106.82 (6)
Zn4vi—Ce1—Zn4vii180.00 (2)Mg6xviii—Mg5—Zn6xx106.82 (6)
Zn3i—Ce1—Zn4viii83.83 (2)Zn6xix—Mg5—Zn6xx73.18 (6)
Zn3—Ce1—Zn4viii96.17 (2)Mg6xix—Mg5—Zn6xx73.18 (6)
Zn3ii—Ce1—Zn4viii46.568 (14)Zn3vii—Mg5—Mg6xx65.08 (2)
Zn3iii—Ce1—Zn4viii133.432 (14)Zn3xvi—Mg5—Mg6xx114.92 (2)
Zn4iv—Ce1—Zn4viii79.95 (3)Zn3iv—Mg5—Mg6xx114.92 (2)
Zn4v—Ce1—Zn4viii100.05 (3)Zn3xvii—Mg5—Mg6xx65.08 (2)
Zn4vi—Ce1—Zn4viii84.37 (2)Zn6xviii—Mg5—Mg6xx106.82 (6)
Zn4vii—Ce1—Zn4viii95.63 (2)Mg6xviii—Mg5—Mg6xx106.82 (6)
Zn3i—Ce1—Zn4ix133.432 (14)Zn6xix—Mg5—Mg6xx73.18 (6)
Zn3—Ce1—Zn4ix46.568 (14)Mg6xix—Mg5—Mg6xx73.18 (6)
Zn3ii—Ce1—Zn4ix96.17 (2)Zn6xx—Mg5—Mg6xx0.00 (6)
Zn3iii—Ce1—Zn4ix83.83 (2)Zn3vii—Mg5—Mg6114.92 (2)
Zn4iv—Ce1—Zn4ix84.37 (2)Zn3xvi—Mg5—Mg665.08 (2)
Zn4v—Ce1—Zn4ix95.63 (2)Zn3iv—Mg5—Mg665.08 (2)
Zn4vi—Ce1—Zn4ix79.95 (3)Zn3xvii—Mg5—Mg6114.92 (2)
Zn4vii—Ce1—Zn4ix100.05 (3)Zn6xviii—Mg5—Mg673.18 (6)
Zn4viii—Ce1—Zn4ix136.68 (3)Mg6xviii—Mg5—Mg673.18 (6)
Zn3i—Ce1—Zn4x46.568 (14)Zn6xix—Mg5—Mg6106.82 (6)
Zn3—Ce1—Zn4x133.432 (14)Mg6xix—Mg5—Mg6106.82 (6)
Zn3ii—Ce1—Zn4x83.83 (2)Zn6xx—Mg5—Mg6180.0
Zn3iii—Ce1—Zn4x96.17 (2)Mg6xx—Mg5—Mg6180.0
Zn4iv—Ce1—Zn4x95.63 (2)Zn3vii—Mg5—Zn6114.92 (2)
Zn4v—Ce1—Zn4x84.37 (2)Zn3xvi—Mg5—Zn665.08 (2)
Zn4vi—Ce1—Zn4x100.05 (3)Zn3iv—Mg5—Zn665.08 (2)
Zn4vii—Ce1—Zn4x79.95 (3)Zn3xvii—Mg5—Zn6114.92 (2)
Zn4viii—Ce1—Zn4x43.32 (3)Zn6xviii—Mg5—Zn673.18 (6)
Zn4ix—Ce1—Zn4x180.00 (3)Mg6xviii—Mg5—Zn673.18 (6)
Zn3i—Ce1—Zn4xi96.17 (2)Zn6xix—Mg5—Zn6106.82 (6)
Zn3—Ce1—Zn4xi83.83 (2)Mg6xix—Mg5—Zn6106.82 (6)
Zn3ii—Ce1—Zn4xi133.432 (13)Zn6xx—Mg5—Zn6180.0
Zn3iii—Ce1—Zn4xi46.568 (14)Mg6xx—Mg5—Zn6180.0
Zn4iv—Ce1—Zn4xi100.05 (3)Mg6—Mg5—Zn60.0
Zn4v—Ce1—Zn4xi79.95 (3)Zn3vii—Zn5—Zn3xvi180.0
Zn4vi—Ce1—Zn4xi95.63 (2)Zn3vii—Zn5—Zn3iv89.95 (4)
Zn4vii—Ce1—Zn4xi84.37 (2)Zn3xvi—Zn5—Zn3iv90.05 (4)
Zn4viii—Ce1—Zn4xi180.00 (2)Zn3vii—Zn5—Zn3xvii90.05 (4)
Zn4ix—Ce1—Zn4xi43.32 (3)Zn3xvi—Zn5—Zn3xvii89.95 (4)
Zn4x—Ce1—Zn4xi136.68 (3)Zn3iv—Zn5—Zn3xvii180.0
Zn3iv—Ce2—Zn3xi148.73 (4)Zn3vii—Zn5—Zn6xviii65.08 (2)
Zn3iv—Ce2—Zn3vii78.03 (3)Zn3xvi—Zn5—Zn6xviii114.92 (2)
Zn3xi—Ce2—Zn3vii93.56 (3)Zn3iv—Zn5—Zn6xviii114.92 (2)
Zn3iv—Ce2—Zn3ix93.56 (3)Zn3xvii—Zn5—Zn6xviii65.08 (2)
Zn3xi—Ce2—Zn3ix78.03 (3)Zn3vii—Zn5—Mg6xviii65.08 (2)
Zn3vii—Ce2—Zn3ix148.73 (4)Zn3xvi—Zn5—Mg6xviii114.92 (2)
Zn3iv—Ce2—Zn4xi157.35 (3)Zn3iv—Zn5—Mg6xviii114.92 (2)
Zn3xi—Ce2—Zn4xi52.46 (2)Zn3xvii—Zn5—Mg6xviii65.08 (2)
Zn3vii—Ce2—Zn4xi115.44 (2)Zn6xviii—Zn5—Mg6xviii0.00 (6)
Zn3ix—Ce2—Zn4xi83.34 (2)Zn3vii—Zn5—Zn6xix114.92 (2)
Zn3iv—Ce2—Zn4ix115.44 (2)Zn3xvi—Zn5—Zn6xix65.08 (2)
Zn3xi—Ce2—Zn4ix83.34 (2)Zn3iv—Zn5—Zn6xix65.08 (2)
Zn3vii—Ce2—Zn4ix157.34 (3)Zn3xvii—Zn5—Zn6xix114.92 (2)
Zn3ix—Ce2—Zn4ix52.46 (2)Zn6xviii—Zn5—Zn6xix180.0
Zn4xi—Ce2—Zn4ix46.13 (3)Mg6xviii—Zn5—Zn6xix180.0
Zn3iv—Ce2—Zn4iv52.46 (2)Zn3vii—Zn5—Mg6xix114.92 (2)
Zn3xi—Ce2—Zn4iv157.34 (3)Zn3xvi—Zn5—Mg6xix65.08 (2)
Zn3vii—Ce2—Zn4iv83.34 (2)Zn3iv—Zn5—Mg6xix65.08 (2)
Zn3ix—Ce2—Zn4iv115.44 (2)Zn3xvii—Zn5—Mg6xix114.92 (2)
Zn4xi—Ce2—Zn4iv108.85 (3)Zn6xviii—Zn5—Mg6xix180.0
Zn4ix—Ce2—Zn4iv90.92 (3)Mg6xviii—Zn5—Mg6xix180.0
Zn3iv—Ce2—Zn4vii83.34 (2)Zn6xix—Zn5—Mg6xix0.00 (6)
Zn3xi—Ce2—Zn4vii115.44 (2)Zn3vii—Zn5—Zn6xx65.08 (2)
Zn3vii—Ce2—Zn4vii52.46 (2)Zn3xvi—Zn5—Zn6xx114.92 (2)
Zn3ix—Ce2—Zn4vii157.35 (3)Zn3iv—Zn5—Zn6xx114.92 (2)
Zn4xi—Ce2—Zn4vii90.92 (3)Zn3xvii—Zn5—Zn6xx65.08 (2)
Zn4ix—Ce2—Zn4vii108.85 (3)Zn6xviii—Zn5—Zn6xx106.82 (6)
Zn4iv—Ce2—Zn4vii46.13 (3)Mg6xviii—Zn5—Zn6xx106.82 (6)
Zn3iv—Ce2—Zn3iii131.060 (13)Zn6xix—Zn5—Zn6xx73.18 (6)
Zn3xi—Ce2—Zn3iii71.74 (2)Mg6xix—Zn5—Zn6xx73.18 (6)
Zn3vii—Ce2—Zn3iii71.74 (2)Zn3vii—Zn5—Mg6xx65.08 (2)
Zn3ix—Ce2—Zn3iii131.060 (13)Zn3xvi—Zn5—Mg6xx114.92 (2)
Zn4xi—Ce2—Zn3iii47.723 (14)Zn3iv—Zn5—Mg6xx114.92 (2)
Zn4ix—Ce2—Zn3iii86.05 (2)Zn3xvii—Zn5—Mg6xx65.08 (2)
Zn4iv—Ce2—Zn3iii86.05 (2)Zn6xviii—Zn5—Mg6xx106.82 (6)
Zn4vii—Ce2—Zn3iii47.723 (14)Mg6xviii—Zn5—Mg6xx106.82 (6)
Zn3iv—Ce2—Zn371.74 (2)Zn6xix—Zn5—Mg6xx73.18 (6)
Zn3xi—Ce2—Zn3131.060 (14)Mg6xix—Zn5—Mg6xx73.18 (6)
Zn3vii—Ce2—Zn3131.060 (14)Zn6xx—Zn5—Mg6xx0.00 (6)
Zn3ix—Ce2—Zn371.74 (2)Zn3vii—Zn5—Mg6114.92 (2)
Zn4xi—Ce2—Zn386.05 (2)Zn3xvi—Zn5—Mg665.08 (2)
Zn4ix—Ce2—Zn347.723 (14)Zn3iv—Zn5—Mg665.08 (2)
Zn4iv—Ce2—Zn347.723 (14)Zn3xvii—Zn5—Mg6114.92 (2)
Zn4vii—Ce2—Zn386.05 (2)Zn6xviii—Zn5—Mg673.18 (6)
Zn3iii—Ce2—Zn3100.80 (4)Mg6xviii—Zn5—Mg673.18 (6)
Zn3iv—Ce2—Zn447.955 (14)Zn6xix—Zn5—Mg6106.82 (6)
Zn3xi—Ce2—Zn4124.451 (19)Mg6xix—Zn5—Mg6106.82 (6)
Zn3vii—Ce2—Zn4124.450 (19)Zn6xx—Zn5—Mg6180.0
Zn3ix—Ce2—Zn447.955 (14)Mg6xx—Zn5—Mg6180.0
Zn4xi—Ce2—Zn4119.782 (18)Zn3vii—Zn5—Zn6114.92 (2)
Zn4ix—Ce2—Zn474.21 (2)Zn3xvi—Zn5—Zn665.08 (2)
Zn4iv—Ce2—Zn474.21 (2)Zn3iv—Zn5—Zn665.08 (2)
Zn4vii—Ce2—Zn4119.782 (18)Zn3xvii—Zn5—Zn6114.92 (2)
Zn3iii—Ce2—Zn4151.53 (3)Zn6xviii—Zn5—Zn673.18 (6)
Zn3—Ce2—Zn450.73 (2)Mg6xviii—Zn5—Zn673.18 (6)
Zn3iv—Ce2—Zn4iii124.450 (19)Zn6xix—Zn5—Zn6106.82 (6)
Zn3xi—Ce2—Zn4iii47.955 (14)Mg6xix—Zn5—Zn6106.82 (6)
Zn3vii—Ce2—Zn4iii47.955 (14)Zn6xx—Zn5—Zn6180.0
Zn3ix—Ce2—Zn4iii124.450 (19)Mg6xx—Zn5—Zn6180.0
Zn4xi—Ce2—Zn4iii74.21 (2)Mg6—Zn5—Zn60.0
Zn4ix—Ce2—Zn4iii119.782 (18)Zn4xxi—Mg6—Zn4110.00 (8)
Zn4iv—Ce2—Zn4iii119.782 (18)Zn4xxi—Mg6—Zn5xxii109.991 (12)
Zn4vii—Ce2—Zn4iii74.21 (2)Zn4—Mg6—Zn5xxii109.991 (12)
Zn3iii—Ce2—Zn4iii50.73 (2)Zn4xxi—Mg6—Mg5xxii109.991 (12)
Zn3—Ce2—Zn4iii151.53 (3)Zn4—Mg6—Mg5xxii109.991 (12)
Zn4—Ce2—Zn4iii157.75 (4)Zn5xxii—Mg6—Mg5xxii0.0
Zn4ix—Zn3—Zn4iv121.85 (5)Zn4xxi—Mg6—Mg5109.991 (12)
Zn4ix—Zn3—Zn5xii113.30 (3)Zn4—Mg6—Mg5109.991 (12)
Zn4iv—Zn3—Zn5xii113.30 (3)Zn5xxii—Mg6—Mg5106.82 (6)
Zn4ix—Zn3—Mg5xii113.30 (3)Mg5xxii—Mg6—Mg5106.82 (6)
Zn4iv—Zn3—Mg5xii113.30 (3)Zn4xxi—Mg6—Zn5109.991 (12)
Zn5xii—Zn3—Mg5xii0.0Zn4—Mg6—Zn5109.991 (12)
Zn4ix—Zn3—Zn492.58 (3)Zn5xxii—Mg6—Zn5106.82 (6)
Zn4iv—Zn3—Zn492.58 (3)Mg5xxii—Mg6—Zn5106.82 (6)
Zn5xii—Zn3—Zn4120.19 (4)Mg5—Mg6—Zn50.0
Mg5xii—Zn3—Zn4120.19 (4)Zn4xxi—Mg6—Zn3xvi54.12 (2)
Zn4ix—Zn3—Zn6ix55.80 (3)Zn4—Mg6—Zn3xvi118.75 (5)
Zn4iv—Zn3—Zn6ix138.99 (5)Zn5xxii—Mg6—Zn3xvi131.25 (4)
Zn5xii—Zn3—Zn6ix58.30 (3)Mg5xxii—Mg6—Zn3xvi131.25 (4)
Mg5xii—Zn3—Zn6ix58.30 (3)Mg5—Mg6—Zn3xvi56.615 (19)
Zn4—Zn3—Zn6ix127.31 (2)Zn5—Mg6—Zn3xvi56.615 (19)
Zn4ix—Zn3—Mg6ix55.80 (3)Zn4xxi—Mg6—Zn3ix118.75 (5)
Zn4iv—Zn3—Mg6ix138.99 (5)Zn4—Mg6—Zn3ix54.12 (2)
Zn5xii—Zn3—Mg6ix58.30 (3)Zn5xxii—Mg6—Zn3ix56.615 (19)
Mg5xii—Zn3—Mg6ix58.30 (3)Mg5xxii—Mg6—Zn3ix56.615 (19)
Zn4—Zn3—Mg6ix127.31 (2)Mg5—Mg6—Zn3ix131.25 (4)
Zn6ix—Zn3—Mg6ix0.0Zn5—Mg6—Zn3ix131.25 (4)
Zn4ix—Zn3—Zn6iv138.99 (5)Zn3xvi—Mg6—Zn3ix169.49 (8)
Zn4iv—Zn3—Zn6iv55.80 (3)Zn4xxi—Mg6—Zn3xxiii54.12 (2)
Zn5xii—Zn3—Zn6iv58.30 (3)Zn4—Mg6—Zn3xxiii118.75 (5)
Mg5xii—Zn3—Zn6iv58.30 (3)Zn5xxii—Mg6—Zn3xxiii56.615 (19)
Zn4—Zn3—Zn6iv127.31 (2)Mg5xxii—Mg6—Zn3xxiii56.615 (19)
Zn6ix—Zn3—Zn6iv97.75 (3)Mg5—Mg6—Zn3xxiii131.25 (4)
Mg6ix—Zn3—Zn6iv97.75 (3)Zn5—Mg6—Zn3xxiii131.25 (4)
Zn4ix—Zn3—Mg6iv138.99 (5)Zn3xvi—Mg6—Zn3xxiii97.75 (3)
Zn4iv—Zn3—Mg6iv55.80 (3)Zn3ix—Mg6—Zn3xxiii81.28 (3)
Zn5xii—Zn3—Mg6iv58.30 (3)Zn4xxi—Mg6—Zn3iv118.75 (5)
Mg5xii—Zn3—Mg6iv58.30 (3)Zn4—Mg6—Zn3iv54.12 (2)
Zn4—Zn3—Mg6iv127.31 (2)Zn5xxii—Mg6—Zn3iv131.25 (4)
Zn6ix—Zn3—Mg6iv97.75 (3)Mg5xxii—Mg6—Zn3iv131.25 (4)
Mg6ix—Zn3—Mg6iv97.75 (3)Mg5—Mg6—Zn3iv56.615 (19)
Zn6iv—Zn3—Mg6iv0.00 (7)Zn5—Mg6—Zn3iv56.615 (19)
Zn4ix—Zn3—Ce2iv156.48 (4)Zn3xvi—Mg6—Zn3iv81.28 (3)
Zn4iv—Zn3—Ce2iv69.09 (2)Zn3ix—Mg6—Zn3iv97.75 (3)
Zn5xii—Zn3—Ce2iv75.27 (2)Zn3xxiii—Mg6—Zn3iv169.49 (8)
Mg5xii—Zn3—Ce2iv75.27 (2)Zn4xxi—Mg6—Ce2176.02 (6)
Zn4—Zn3—Ce2iv65.06 (2)Zn4—Mg6—Ce266.02 (2)
Zn6ix—Zn3—Ce2iv131.82 (5)Zn5xxii—Mg6—Ce272.11 (3)
Mg6ix—Zn3—Ce2iv131.82 (5)Mg5xxii—Mg6—Ce272.11 (3)
Zn6iv—Zn3—Ce2iv64.47 (3)Mg5—Mg6—Ce272.11 (3)
Mg6iv—Zn3—Ce2iv64.47 (3)Zn5—Mg6—Ce272.11 (3)
Zn4ix—Zn3—Ce2ix69.09 (2)Zn3xvi—Mg6—Ce2127.25 (3)
Zn4iv—Zn3—Ce2ix156.48 (4)Zn3ix—Mg6—Ce259.271 (19)
Zn5xii—Zn3—Ce2ix75.27 (2)Zn3xxiii—Mg6—Ce2127.25 (3)
Mg5xii—Zn3—Ce2ix75.27 (2)Zn3iv—Mg6—Ce259.271 (19)
Zn4—Zn3—Ce2ix65.06 (2)Zn4xxi—Mg6—Ce2xviii66.02 (2)
Zn6ix—Zn3—Ce2ix64.47 (3)Zn4—Mg6—Ce2xviii176.02 (6)
Mg6ix—Zn3—Ce2ix64.47 (3)Zn5xxii—Mg6—Ce2xviii72.11 (3)
Zn6iv—Zn3—Ce2ix131.82 (5)Mg5xxii—Mg6—Ce2xviii72.11 (3)
Mg6iv—Zn3—Ce2ix131.82 (5)Mg5—Mg6—Ce2xviii72.11 (3)
Ce2iv—Zn3—Ce2ix93.56 (3)Zn5—Mg6—Ce2xviii72.11 (3)
Zn4ix—Zn3—Ce170.93 (3)Zn3xvi—Mg6—Ce2xviii59.271 (19)
Zn4iv—Zn3—Ce170.93 (3)Zn3ix—Mg6—Ce2xviii127.25 (3)
Zn5xii—Zn3—Ce196.75 (3)Zn3xxiii—Mg6—Ce2xviii59.271 (19)
Mg5xii—Zn3—Ce196.75 (3)Zn3iv—Mg6—Ce2xviii127.25 (3)
Zn4—Zn3—Ce1143.06 (4)Ce2—Mg6—Ce2xviii117.96 (6)
Zn6ix—Zn3—Ce170.67 (3)Zn4xxi—Zn6—Zn4110.00 (8)
Mg6ix—Zn3—Ce170.67 (3)Zn4xxi—Zn6—Zn5xxii109.991 (12)
Zn6iv—Zn3—Ce170.67 (3)Zn4—Zn6—Zn5xxii109.991 (12)
Mg6iv—Zn3—Ce170.67 (3)Zn4xxi—Zn6—Mg5xxii109.991 (12)
Ce2iv—Zn3—Ce1131.401 (17)Zn4—Zn6—Mg5xxii109.991 (12)
Ce2ix—Zn3—Ce1131.401 (17)Zn5xxii—Zn6—Mg5xxii0.0
Zn4xiii—Zn4—Zn3ix118.64 (3)Zn4xxi—Zn6—Mg5109.991 (12)
Zn4xiii—Zn4—Zn3iv118.64 (3)Zn4—Zn6—Mg5109.991 (12)
Zn3ix—Zn4—Zn3iv121.85 (5)Zn5xxii—Zn6—Mg5106.82 (6)
Zn4xiii—Zn4—Mg6125.00 (4)Mg5xxii—Zn6—Mg5106.82 (6)
Zn3ix—Zn4—Mg670.08 (3)Zn4xxi—Zn6—Zn5109.991 (12)
Zn3iv—Zn4—Mg670.08 (3)Zn4—Zn6—Zn5109.991 (12)
Zn4xiii—Zn4—Zn6125.00 (4)Zn5xxii—Zn6—Zn5106.82 (6)
Zn3ix—Zn4—Zn670.08 (3)Mg5xxii—Zn6—Zn5106.82 (6)
Zn3iv—Zn4—Zn670.08 (3)Mg5—Zn6—Zn50.0
Mg6—Zn4—Zn60.00 (6)Zn4xxi—Zn6—Zn3xvi54.12 (2)
Zn4xiii—Zn4—Zn3104.84 (2)Zn4—Zn6—Zn3xvi118.75 (5)
Zn3ix—Zn4—Zn387.42 (3)Zn5xxii—Zn6—Zn3xvi131.25 (4)
Zn3iv—Zn4—Zn387.42 (3)Mg5xxii—Zn6—Zn3xvi131.25 (4)
Mg6—Zn4—Zn3130.16 (5)Mg5—Zn6—Zn3xvi56.615 (19)
Zn6—Zn4—Zn3130.16 (5)Zn5—Zn6—Zn3xvi56.615 (19)
Zn4xiii—Zn4—Ce2ix66.934 (16)Zn4xxi—Zn6—Zn3ix118.75 (5)
Zn3ix—Zn4—Ce2ix67.15 (2)Zn4—Zn6—Zn3ix54.12 (2)
Zn3iv—Zn4—Ce2ix149.04 (4)Zn5xxii—Zn6—Zn3ix56.615 (19)
Mg6—Zn4—Ce2ix134.531 (14)Mg5xxii—Zn6—Zn3ix56.615 (19)
Zn6—Zn4—Ce2ix134.531 (14)Mg5—Zn6—Zn3ix131.25 (4)
Zn3—Zn4—Ce2ix62.48 (2)Zn5—Zn6—Zn3ix131.25 (4)
Zn4xiii—Zn4—Ce2iv66.934 (16)Zn3xvi—Zn6—Zn3ix169.49 (8)
Zn3ix—Zn4—Ce2iv149.04 (4)Zn4xxi—Zn6—Zn3xxiii54.12 (2)
Zn3iv—Zn4—Ce2iv67.15 (2)Zn4—Zn6—Zn3xxiii118.75 (5)
Mg6—Zn4—Ce2iv134.531 (13)Zn5xxii—Zn6—Zn3xxiii56.615 (19)
Zn6—Zn4—Ce2iv134.531 (13)Mg5xxii—Zn6—Zn3xxiii56.615 (19)
Zn3—Zn4—Ce2iv62.48 (2)Mg5—Zn6—Zn3xxiii131.25 (4)
Ce2ix—Zn4—Ce2iv90.92 (3)Zn5—Zn6—Zn3xxiii131.25 (4)
Zn4xiii—Zn4—Ce2168.873 (18)Zn3xvi—Zn6—Zn3xxiii97.75 (3)
Zn3ix—Zn4—Ce262.95 (3)Zn3ix—Zn6—Zn3xxiii81.28 (3)
Zn3iv—Zn4—Ce262.95 (3)Zn4xxi—Zn6—Zn3iv118.75 (5)
Mg6—Zn4—Ce266.13 (4)Zn4—Zn6—Zn3iv54.12 (2)
Zn6—Zn4—Ce266.13 (4)Zn5xxii—Zn6—Zn3iv131.25 (4)
Zn3—Zn4—Ce264.04 (3)Mg5xxii—Zn6—Zn3iv131.25 (4)
Ce2ix—Zn4—Ce2105.79 (2)Mg5—Zn6—Zn3iv56.615 (19)
Ce2iv—Zn4—Ce2105.79 (2)Zn5—Zn6—Zn3iv56.615 (19)
Zn4xiii—Zn4—Ce1xiv68.338 (14)Zn3xvi—Zn6—Zn3iv81.28 (3)
Zn3ix—Zn4—Ce1xiv135.41 (4)Zn3ix—Zn6—Zn3iv97.75 (3)
Zn3iv—Zn4—Ce1xiv62.50 (2)Zn3xxiii—Zn6—Zn3iv169.49 (8)
Mg6—Zn4—Ce1xiv71.67 (3)Zn4xxi—Zn6—Ce2176.02 (6)
Zn6—Zn4—Ce1xiv71.67 (3)Zn4—Zn6—Ce266.02 (2)
Zn3—Zn4—Ce1xiv135.690 (14)Zn5xxii—Zn6—Ce272.11 (3)
Ce2ix—Zn4—Ce1xiv135.06 (3)Mg5xxii—Zn6—Ce272.11 (3)
Ce2iv—Zn4—Ce1xiv75.553 (16)Mg5—Zn6—Ce272.11 (3)
Ce2—Zn4—Ce1xiv119.09 (2)Zn5—Zn6—Ce272.11 (3)
Zn4xiii—Zn4—Ce1xv68.338 (14)Zn3xvi—Zn6—Ce2127.25 (3)
Zn3ix—Zn4—Ce1xv62.50 (2)Zn3ix—Zn6—Ce259.271 (19)
Zn3iv—Zn4—Ce1xv135.41 (4)Zn3xxiii—Zn6—Ce2127.25 (3)
Mg6—Zn4—Ce1xv71.67 (3)Zn3iv—Zn6—Ce259.271 (19)
Zn6—Zn4—Ce1xv71.67 (3)Zn4xxi—Zn6—Ce2xviii66.02 (2)
Zn3—Zn4—Ce1xv135.690 (14)Zn4—Zn6—Ce2xviii176.02 (6)
Ce2ix—Zn4—Ce1xv75.553 (16)Zn5xxii—Zn6—Ce2xviii72.11 (3)
Ce2iv—Zn4—Ce1xv135.06 (3)Mg5xxii—Zn6—Ce2xviii72.11 (3)
Ce2—Zn4—Ce1xv119.09 (2)Mg5—Zn6—Ce2xviii72.11 (3)
Ce1xiv—Zn4—Ce1xv84.37 (2)Zn5—Zn6—Ce2xviii72.11 (3)
Zn3vii—Mg5—Zn3xvi180.0Zn3xvi—Zn6—Ce2xviii59.271 (19)
Zn3vii—Mg5—Zn3iv89.95 (4)Zn3ix—Zn6—Ce2xviii127.25 (3)
Zn3xvi—Mg5—Zn3iv90.05 (4)Zn3xxiii—Zn6—Ce2xviii59.271 (19)
Zn3vii—Mg5—Zn3xvii90.05 (4)Zn3iv—Zn6—Ce2xviii127.25 (3)
Zn3xvi—Mg5—Zn3xvii89.95 (4)Ce2—Zn6—Ce2xviii117.96 (6)
Zn3iv—Mg5—Zn3xvii180.0
Symmetry codes: (i) x, y, z; (ii) x, y, z; (iii) x, y, z; (iv) x+1/2, y+1/2, z+1/2; (v) x1/2, y1/2, z1/2; (vi) x1/2, y+1/2, z1/2; (vii) x+1/2, y1/2, z+1/2; (viii) x+1/2, y+1/2, z1/2; (ix) x1/2, y+1/2, z+1/2; (x) x+1/2, y1/2, z1/2; (xi) x1/2, y1/2, z+1/2; (xii) x1/2, y+1/2, z1/2; (xiii) x, y+1, z; (xiv) x+1/2, y+1/2, z+1/2; (xv) x1/2, y+1/2, z+1/2; (xvi) x+1/2, y+1/2, z+1/2; (xvii) x+1/2, y1/2, z+1/2; (xviii) x, y, z+1; (xix) x+1, y, z; (xx) x+1, y, z+1; (xxi) x, y, z+1; (xxii) x1, y, z; (xxiii) x1/2, y+1/2, z+1/2.

Experimental details

(I)(II)
Crystal data
Chemical formulaLa3(Zn0.874Mg0.126)11Ce3(Zn0.863Mg0.137)11
Mr2158.412155.40
Crystal system, space groupOrthorhombic, ImmmOrthorhombic, Immm
Temperature (K)293293
a, b, c (Å)4.5992 (4), 9.0514 (8), 13.8635 (11)4.5641 (6), 8.9542 (14), 13.7261 (18)
V3)577.13 (8)560.96 (14)
Z11
Radiation typeMo KαMo Kα
µ (mm1)30.4231.79
Crystal size (mm)0.14 × 0.11 × 0.040.11 × 0.10 × 0.03
Data collection
DiffractometerOxford Xcalibur3 CCD area-detector
diffractometer
Oxford Xcalibur3 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2008)
Multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
Tmin, Tmax0.031, 0.2880.046, 0.379
No. of measured, independent and
observed [I > 2σ(I)] reflections
1821, 372, 336 1896, 395, 349
Rint0.0320.032
(sin θ/λ)max1)0.6240.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.051, 1.11 0.022, 0.051, 1.00
No. of reflections372395
No. of parameters2627
Δρmax, Δρmin (e Å3)1.32, 1.081.71, 1.41

Computer programs: CrysAlis CCD (Oxford Diffraction, 2008), CrysAlis RED (Oxford Diffraction, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2006).

 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds