Download citation
Download citation
link to html
The title compound, [Cu4Cl6O(C12H14N2)4], is a new example of the well known [Cu44-O)(μ-X)6L4] class of complex (X is Cl, Br or I, and L is a monodentate ligand). The molecule has crystallographic C2 symmetry, with two Cl ions on each edge of a Cu4 tetrahedron. Two of these, on opposite edges of the tetrahedron, accept intramolecular hydrogen bonds from two of the pyrazole N—H donors.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270103002853/bm1524sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103002853/bm1524Isup2.hkl
Contains datablock I

CCDC reference: 208000

Comment top

The [Cu44-O)(µ-X)6L4]n- structural type is well known, where X can be Cl, Br or I and L is a mondentate ligand. The terminal ligand L can be a halide (giving n = 4), or a variety of neutral monodentate N or O donors (giving n = 0), such as imidazoles (Atria et al., 1999; Clegg et al., 1988), thiazolines (Bolos & Christidis, 2002), pyridines (Gill & Sterns, 1970; Händler, 1990; Kilbourn & Dunitz, 1967), pyrazines (Näther & Jeß, 2002), amines (Pavlenko et al., 1993), sulfimides (Kelly et al., 1999), phosphine oxides (Jorík et al., 1996) or sulfoxides (Guy et al., 1988) (not a complete list). Only one previous example containing a pyrazole terminal ligand has been structurally characterized, namely [Cu44-O)(µ-Cl)6(L1)4] (L1 is 3,4-dimethyl-5-phenylpyrazole; Keij et al., 1991). As part of our studies of the reactions of substituted pyrazoles with CuII salts (Liu et al., 2001; Liu, McAllister et al., 2002; Liu, McLaughlin et al., 2002), we have now isolated the title compound, (I), as a second example with a similar formulation, namely [Cu44-O)(µ-Cl)6(L2)4] [L2 is 5-(2,4,6-trimethylphenyl)pyrazole]. \sch

The approximately tetrahedral cluster core in (I) has crystallographic C2 symmetry, with the C2 axis at (1/2, y, 1/4) passing through atoms Cl34, O3 and Cl35. The two unique Cu centres have very similar distorted trigonal-bipyramidal stereochemistries, with τ values of 0.7198 (14) (Cu1) and 0.7560 (12) (Cu2), which are closer to the ideal value of 1 for a trigonal bipyramid than the value of 0 expected for an ideal square pyramid (Addison et al., 1984). The Cu—N, Cu—O and Cu—Cl distances in the molecule lie within the usual ranges, but show small differences between the two Cu centres.

Interestingly, the Cu—Cl bonds to the two ligands that accept N—H···Cl hydrogen bonds (see below) are not notably longer than the other Cu—Cl bonds in the molecule, showing that the small Cu—Cl bond-length variations cannot be attributed to this feature of the structure. The Cu—O—Cu angles in the molecule also show small distortions from the tetrahedral angle. These small deviations from ideal tetrahedral molecular symmetry are common in [Cu44-O)(µ-X)6L4] complexes, and have a significant effect on their magnetic properties (Blake et al., 1997, and references therein). The four unique Cu···Cu distances in the structure range from 3.0570 (4)–3.1689 (5) Å.

The four L2 ligands in the molecule form two pairs of intramolecular hydrogen bonds, with N19—H19 and N19i—H19i [symmetry code: (i) 1 − x, y, 1/2 − z] interacting with atom Cl34, and N5—H5 and N5i—H5i with atom Cl35. This is the same pattern of intramolecular hydrogen bonding shown by [Cu44-O)(µ-Cl)6(L1)4] (Keij et al., 1991).

The molecules in the crystal associate through two unique ππ interactions. One is between the aryl groups C23—C28 and C9ii—C14ii [symmetry code: (ii) 1 − x, y + 1, 1/2 − z]. The least-squares planes of these two groups have a dihedral angle between them of 5.89 (11)°, and are separated by an average of 3.72 Å. The centroids of the two interacting aryl rings are offset by 1.69 Å. The second ππ interaction is between the opposite face of C23—C28 and C23iii—C28iii [symmetry code: (iii) 1 − x, 2 − y, 1 − z]. These two rings are coplanar by symmetry and separated by 3.70 Å, with centroids offset by 2.59 Å. The effect of these interactions is to associate the molecules into discrete ππ-stacked tetrads, which zigzag along the crystallographic [110] direction. There are no other significant intermolecular interactions in the lattice. Request from coeditor - please insert references to Figs. 1 and 2 at appropriate places.

Experimental top

A solution of CuCl2 (0.13 g, 1.0 mmol) in MeOH (10 ml) was added to a solution of 3-mesitylpyrazole (0.37 g, 2.0 mmol) and NaOH (0.040 g, 1.0 mol) in MeOH (20 ml), yielding an immediate green precipitate. The mixture was stirred overnight and then filtered. Slow concentration of the filtrate by evaporation yielded dark-blue crystals of (I), contaminated by a smaller amount of paler blue [CuCl2L4]. Elemental analysis of (I), found: C 46.9, H 4.9, N 9.1%; calculated for C48H56Cl6Cu4N8O: C 47.0, H 4.6, N 9.1%.

Refinement top

The slightly high displacement parameters on atoms C26, C27 and C30 may be indicative of a small degree of librational disorder involving these atoms. However, attempts to refine a static disorder model for the C23—C31 mesityl group to take account of this were unsuccessful and the original model has been retained. All H atoms were placed in calculated positions and refined using a riding model, with the methyl group torsion angles being allowed to refine freely. The fixed C—H distances were: CH(aryl) = 0.95, CH(methyl) = 0.98 and N—H = 0.88 Å. The H-atom Uiso parameters were fixed at 1.2Ueq(C) for the CH(aryl) and N—H groups, and at 1.5Ueq(C) for CH(methyl).

Computing details top

Data collection: COLLECT (Nonius, 1999); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEX (McArdle, 1995); software used to prepare material for publication: local program.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with 50% probability displacement ellipsoids and the atom-numbering scheme [symmetry code: (i) 1 − x, y, 1/2 − z]. All carbon-bound H atoms have been omitted for clarity.
[Figure 2] Fig. 2. A partial packing diagram for (I), highlighting the association via the mesityl substituents to give discrete ππ-stacked tetrads. All atoms are plotted with arbitrary radii.
Hexa-µ-chloro-µ4-oxo-tetrakis{[5-(2,4,6-trimethylphenyl)pyrazole- κN2]copper(II)} top
Crystal data top
[Cu4Cl6O(C12H14N2)4]F(000) = 2504
Mr = 1227.87Dx = 1.543 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 45511 reflections
a = 21.6279 (2) Åθ = 2.6–27.5°
b = 11.8266 (1) ŵ = 1.93 mm1
c = 20.8023 (3) ÅT = 150 K
β = 96.4448 (5)°Lath, dark blue
V = 5287.28 (10) Å30.30 × 0.24 × 0.14 mm
Z = 4
Data collection top
Nonius KappaCCD area-detector
diffractometer
6034 independent reflections
Radiation source: fine-focus sealed tube5044 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.075
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 2.6°
please specify type of scansh = 2728
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
k = 1515
Tmin = 0.595, Tmax = 0.774l = 2626
45511 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.102 w = 1/[σ2(Fo2) + (0.055P)2 + 4.466P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
6034 reflectionsΔρmax = 0.49 e Å3
311 parametersΔρmin = 0.81 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00148 (15)
Crystal data top
[Cu4Cl6O(C12H14N2)4]V = 5287.28 (10) Å3
Mr = 1227.87Z = 4
Monoclinic, C2/cMo Kα radiation
a = 21.6279 (2) ŵ = 1.93 mm1
b = 11.8266 (1) ÅT = 150 K
c = 20.8023 (3) Å0.30 × 0.24 × 0.14 mm
β = 96.4448 (5)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
6034 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
5044 reflections with I > 2σ(I)
Tmin = 0.595, Tmax = 0.774Rint = 0.075
45511 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.102H-atom parameters constrained
S = 1.05Δρmax = 0.49 e Å3
6034 reflectionsΔρmin = 0.81 e Å3
311 parameters
Special details top

Experimental. Detector set at 30 mm from sample with different 2theta offsets 1 degree phi exposures for chi = 0 degree settings 1 degree omega exposures for chi = 90 degree settings

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. All non-H atoms were refined anisotropically, and no restraints were applied. All H atoms were placed in calculated positions and refined using a riding model.

The asymmetric unit contains half a complex molecule lying on the crystallographic C2 axis at (-x + 1, y, −z + 0.5).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.426319 (12)0.36039 (2)0.238778 (15)0.04162 (11)
Cu20.496150 (13)0.54027 (2)0.323955 (15)0.04324 (11)
O30.50000.44886 (17)0.25000.0384 (5)
N40.35552 (9)0.25795 (16)0.22768 (10)0.0425 (4)
N50.36226 (9)0.15433 (16)0.20167 (10)0.0428 (4)
H50.39740.12930.18930.051*
C60.30923 (10)0.09383 (19)0.19679 (11)0.0393 (5)
C70.26532 (11)0.1628 (2)0.21986 (13)0.0483 (6)
H70.22280.14540.22240.058*
C80.29589 (11)0.2633 (2)0.23875 (13)0.0486 (6)
H80.27700.32660.25690.058*
C90.30819 (10)0.02384 (19)0.17203 (11)0.0379 (5)
C100.34290 (10)0.1081 (2)0.20700 (11)0.0392 (5)
C110.34189 (10)0.2179 (2)0.18222 (12)0.0426 (5)
H110.36510.27550.20590.051*
C120.30778 (11)0.2444 (2)0.12395 (13)0.0476 (6)
C130.27367 (12)0.1601 (2)0.09014 (13)0.0473 (6)
H130.25010.17810.05010.057*
C140.27291 (11)0.0497 (2)0.11313 (12)0.0411 (5)
C150.38043 (13)0.0833 (2)0.27164 (13)0.0537 (6)
H15A0.38820.15400.29580.081*
H15B0.35710.03120.29650.081*
H15C0.42020.04870.26430.081*
C160.30785 (15)0.3645 (2)0.09786 (18)0.0683 (9)
H16A0.26700.38170.07460.103*
H16B0.31670.41760.13390.103*
H16C0.33990.37170.06830.103*
C170.23448 (13)0.0389 (2)0.07473 (13)0.0504 (6)
H17A0.22350.01190.03040.076*
H17B0.25860.10900.07400.076*
H17C0.19640.05320.09490.076*
N180.49638 (10)0.63686 (16)0.39910 (11)0.0490 (5)
N190.53308 (9)0.72953 (16)0.40653 (10)0.0427 (4)
H190.55350.75750.37590.051*
C200.53478 (12)0.7744 (2)0.46656 (12)0.0450 (5)
C210.49727 (15)0.7054 (2)0.49919 (15)0.0595 (7)
H210.48880.71330.54280.071*
C220.47435 (15)0.6224 (2)0.45565 (15)0.0620 (7)
H220.44680.56350.46500.074*
C230.57056 (11)0.8778 (2)0.48577 (12)0.0447 (5)
C240.56339 (12)0.9751 (2)0.44704 (13)0.0472 (6)
C250.59777 (14)1.0717 (3)0.46630 (15)0.0599 (7)
H250.59331.13690.43960.072*
C260.63744 (15)1.0760 (3)0.52183 (17)0.0698 (9)
C270.64407 (14)0.9790 (4)0.55972 (16)0.0765 (11)
H270.67230.98060.59820.092*
C280.61102 (14)0.8788 (3)0.54381 (14)0.0595 (7)
C290.51840 (13)0.9808 (2)0.38650 (13)0.0531 (6)
H29A0.50961.06010.37520.080*
H29B0.47960.94250.39380.080*
H29C0.53670.94360.35100.080*
C300.6721 (2)1.1830 (4)0.5435 (2)0.1104 (18)
H30A0.67771.22960.50560.166*
H30B0.71291.16330.56610.166*
H30C0.64811.22530.57270.166*
C310.61846 (18)0.7784 (4)0.58792 (16)0.0851 (11)
H31A0.65640.78690.61800.128*
H31B0.62140.70950.56220.128*
H31C0.58240.77300.61240.128*
Cl320.38760 (3)0.47698 (5)0.31567 (4)0.05574 (19)
Cl330.42428 (3)0.41732 (5)0.12669 (3)0.05115 (16)
Cl340.50000.69909 (6)0.25000.04494 (19)
Cl350.50000.19798 (6)0.25000.0531 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.03262 (16)0.03060 (16)0.0631 (2)0.00468 (10)0.01176 (13)0.00346 (11)
Cu20.03790 (17)0.02994 (16)0.0631 (2)0.00101 (10)0.01120 (13)0.00571 (12)
O30.0316 (10)0.0258 (10)0.0588 (13)0.0000.0098 (9)0.000
N40.0346 (9)0.0328 (9)0.0616 (12)0.0020 (8)0.0113 (8)0.0060 (8)
N50.0320 (9)0.0355 (10)0.0628 (12)0.0042 (7)0.0141 (9)0.0084 (9)
C60.0322 (10)0.0361 (11)0.0505 (12)0.0041 (9)0.0083 (9)0.0026 (9)
C70.0311 (11)0.0441 (13)0.0712 (16)0.0052 (10)0.0130 (11)0.0124 (12)
C80.0347 (11)0.0401 (13)0.0727 (16)0.0015 (10)0.0130 (11)0.0112 (11)
C90.0303 (10)0.0353 (11)0.0493 (12)0.0046 (8)0.0100 (9)0.0022 (9)
C100.0297 (10)0.0402 (11)0.0487 (12)0.0026 (9)0.0086 (9)0.0020 (9)
C110.0302 (10)0.0394 (12)0.0588 (14)0.0002 (9)0.0078 (9)0.0004 (10)
C120.0380 (11)0.0377 (12)0.0670 (15)0.0012 (10)0.0059 (11)0.0099 (11)
C130.0401 (12)0.0449 (13)0.0553 (14)0.0003 (10)0.0012 (10)0.0090 (11)
C140.0341 (11)0.0395 (12)0.0504 (12)0.0021 (9)0.0069 (9)0.0009 (10)
C150.0532 (15)0.0548 (16)0.0521 (14)0.0084 (12)0.0012 (12)0.0060 (12)
C160.0565 (17)0.0456 (16)0.099 (2)0.0041 (13)0.0105 (16)0.0240 (15)
C170.0492 (14)0.0453 (14)0.0559 (14)0.0025 (11)0.0029 (11)0.0033 (11)
N180.0482 (12)0.0350 (10)0.0664 (13)0.0045 (8)0.0179 (10)0.0061 (9)
N190.0445 (10)0.0349 (10)0.0508 (11)0.0027 (8)0.0143 (9)0.0027 (8)
C200.0478 (13)0.0398 (12)0.0492 (13)0.0070 (10)0.0133 (10)0.0018 (10)
C210.0735 (19)0.0498 (15)0.0608 (16)0.0014 (14)0.0312 (14)0.0021 (12)
C220.0665 (18)0.0467 (15)0.0784 (19)0.0042 (13)0.0334 (16)0.0013 (13)
C230.0403 (12)0.0496 (13)0.0459 (12)0.0026 (10)0.0119 (10)0.0106 (10)
C240.0461 (13)0.0439 (13)0.0545 (13)0.0025 (10)0.0183 (11)0.0111 (11)
C250.0598 (17)0.0511 (15)0.0738 (18)0.0111 (13)0.0293 (15)0.0183 (13)
C260.0575 (17)0.076 (2)0.079 (2)0.0158 (16)0.0241 (16)0.0375 (18)
C270.0471 (15)0.120 (3)0.0615 (18)0.0032 (18)0.0022 (14)0.046 (2)
C280.0519 (15)0.076 (2)0.0516 (14)0.0118 (14)0.0095 (12)0.0148 (14)
C290.0562 (15)0.0448 (14)0.0595 (15)0.0054 (12)0.0114 (12)0.0014 (11)
C300.084 (3)0.115 (3)0.139 (4)0.047 (2)0.043 (3)0.083 (3)
C310.078 (2)0.119 (3)0.0559 (17)0.034 (2)0.0013 (16)0.0053 (19)
Cl320.0379 (3)0.0439 (3)0.0893 (5)0.0063 (2)0.0241 (3)0.0210 (3)
Cl330.0481 (3)0.0464 (3)0.0598 (4)0.0054 (3)0.0097 (3)0.0010 (3)
Cl340.0443 (4)0.0266 (3)0.0626 (5)0.0000.0000 (4)0.000
Cl350.0325 (4)0.0269 (4)0.0988 (7)0.0000.0023 (4)0.000
Geometric parameters (Å, º) top
Cu1—O31.8987 (11)C15—H15C0.9800
Cu1—N41.9460 (19)C16—H16A0.9800
Cu1—Cl322.3370 (7)C16—H16B0.9800
Cu1—Cl332.4226 (7)C16—H16C0.9800
Cu1—Cl352.4900 (7)C17—H17A0.9800
Cu2—O31.8897 (12)C17—H17B0.9800
Cu2—N181.936 (2)C17—H17C0.9800
Cu2—Cl322.4517 (7)N18—C221.329 (4)
Cu2—Cl33i2.3944 (7)N18—N191.352 (3)
Cu2—Cl342.4353 (6)N19—C201.353 (3)
Cu1—Cu23.0570 (4)N19—H190.8800
Cu1—Cu2i3.0873 (4)C20—C211.381 (4)
Cu1—Cu1i3.1689 (5)C20—C231.478 (4)
Cu2—Cu2i3.1000 (6)C21—C221.389 (4)
N4—C81.337 (3)C21—H210.9500
N4—N51.354 (3)C22—H220.9500
N5—C61.346 (3)C23—C241.404 (4)
N5—H50.8800C23—C281.409 (4)
C6—C71.378 (3)C24—C251.397 (4)
C6—C91.483 (3)C24—C291.504 (4)
C7—C81.396 (3)C25—C261.360 (5)
C7—H70.9500C25—H250.9500
C8—H80.9500C26—C271.390 (5)
C9—C101.401 (3)C26—C301.512 (4)
C9—C141.403 (3)C27—C281.405 (5)
C10—C111.397 (3)C27—H270.9500
C10—C151.519 (3)C28—C311.499 (5)
C11—C121.382 (3)C29—H29A0.9800
C11—H110.9500C29—H29B0.9800
C12—C131.384 (4)C29—H29C0.9800
C12—C161.521 (3)C30—H30A0.9800
C13—C141.391 (3)C30—H30B0.9800
C13—H130.9500C30—H30C0.9800
C14—C171.509 (3)C31—H31A0.9800
C15—H15A0.9800C31—H31B0.9800
C15—H15B0.9800C31—H31C0.9800
O3—Cu1—N4174.93 (8)H16A—C16—H16B109.5
O3—Cu1—Cl3287.19 (4)C12—C16—H16C109.5
N4—Cu1—Cl3296.36 (6)H16A—C16—H16C109.5
O3—Cu1—Cl3383.66 (2)H16B—C16—H16C109.5
N4—Cu1—Cl3397.46 (6)C14—C17—H17A109.5
Cl32—Cu1—Cl33121.70 (3)C14—C17—H17B109.5
O3—Cu1—Cl3583.92 (5)H17A—C17—H17B109.5
N4—Cu1—Cl3591.01 (6)C14—C17—H17C109.5
Cl32—Cu1—Cl35131.74 (2)H17A—C17—H17C109.5
Cl33—Cu1—Cl35104.297 (19)H17B—C17—H17C109.5
O3—Cu2—N18177.07 (7)C22—N18—N19105.5 (2)
O3—Cu2—Cl33i84.63 (4)C22—N18—Cu2132.08 (19)
N18—Cu2—Cl33i94.33 (7)N19—N18—Cu2121.26 (16)
O3—Cu2—Cl3485.37 (5)N18—N19—C20112.2 (2)
N18—Cu2—Cl3493.31 (6)N18—N19—H19123.9
Cl33i—Cu2—Cl34131.71 (2)C20—N19—H19123.9
O3—Cu2—Cl3284.12 (2)N19—C20—C21105.4 (2)
N18—Cu2—Cl3298.77 (7)N19—C20—C23122.2 (2)
Cl33i—Cu2—Cl32118.77 (3)C21—C20—C23132.4 (2)
Cl34—Cu2—Cl32106.94 (2)C20—C21—C22106.5 (2)
Cu2—O3—Cu2i110.21 (10)C20—C21—H21126.8
Cu2—O3—Cu1107.593 (12)C22—C21—H21126.8
Cu2—O3—Cu1i109.161 (13)N18—C22—C21110.4 (3)
Cu1—O3—Cu1i113.12 (10)N18—C22—H22124.8
C8—N4—N5105.14 (18)C21—C22—H22124.8
C8—N4—Cu1135.35 (16)C24—C23—C28120.2 (3)
N5—N4—Cu1119.49 (14)C24—C23—C20120.2 (2)
C6—N5—N4112.46 (19)C28—C23—C20119.7 (3)
C6—N5—H5123.8C25—C24—C23119.0 (3)
N4—N5—H5123.8C25—C24—C29118.5 (3)
N5—C6—C7105.9 (2)C23—C24—C29122.5 (2)
N5—C6—C9120.3 (2)C26—C25—C24122.6 (3)
C7—C6—C9133.8 (2)C26—C25—H25118.7
C6—C7—C8106.2 (2)C24—C25—H25118.7
C6—C7—H7126.9C25—C26—C27117.7 (3)
C8—C7—H7126.9C25—C26—C30121.9 (4)
N4—C8—C7110.3 (2)C27—C26—C30120.3 (4)
N4—C8—H8124.9C26—C27—C28123.1 (3)
C7—C8—H8124.9C26—C27—H27118.5
C10—C9—C14120.4 (2)C28—C27—H27118.5
C10—C9—C6120.0 (2)C27—C28—C23117.4 (3)
C14—C9—C6119.6 (2)C27—C28—C31120.5 (3)
C11—C10—C9119.0 (2)C23—C28—C31122.1 (3)
C11—C10—C15119.4 (2)C24—C29—H29A109.5
C9—C10—C15121.6 (2)C24—C29—H29B109.5
C12—C11—C10121.3 (2)H29A—C29—H29B109.5
C12—C11—H11119.4C24—C29—H29C109.5
C10—C11—H11119.4H29A—C29—H29C109.5
C11—C12—C13118.9 (2)H29B—C29—H29C109.5
C11—C12—C16120.2 (2)C26—C30—H30A109.5
C13—C12—C16120.9 (2)C26—C30—H30B109.5
C12—C13—C14121.8 (2)H30A—C30—H30B109.5
C12—C13—H13119.1C26—C30—H30C109.5
C14—C13—H13119.1H30A—C30—H30C109.5
C13—C14—C9118.6 (2)H30B—C30—H30C109.5
C13—C14—C17119.8 (2)C28—C31—H31A109.5
C9—C14—C17121.6 (2)C28—C31—H31B109.5
C10—C15—H15A109.5H31A—C31—H31B109.5
C10—C15—H15B109.5C28—C31—H31C109.5
H15A—C15—H15B109.5H31A—C31—H31C109.5
C10—C15—H15C109.5H31B—C31—H31C109.5
H15A—C15—H15C109.5Cu1—Cl32—Cu279.30 (2)
H15B—C15—H15C109.5Cu2i—Cl33—Cu179.72 (2)
C12—C16—H16A109.5Cu2i—Cl34—Cu279.06 (3)
C12—C16—H16B109.5Cu1i—Cl35—Cu179.04 (3)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5···Cl350.882.563.079 (2)119
N19—H19···Cl340.882.833.274 (2)113

Experimental details

Crystal data
Chemical formula[Cu4Cl6O(C12H14N2)4]
Mr1227.87
Crystal system, space groupMonoclinic, C2/c
Temperature (K)150
a, b, c (Å)21.6279 (2), 11.8266 (1), 20.8023 (3)
β (°) 96.4448 (5)
V3)5287.28 (10)
Z4
Radiation typeMo Kα
µ (mm1)1.93
Crystal size (mm)0.30 × 0.24 × 0.14
Data collection
DiffractometerNonius KappaCCD area-detector
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1995)
Tmin, Tmax0.595, 0.774
No. of measured, independent and
observed [I > 2σ(I)] reflections
45511, 6034, 5044
Rint0.075
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.102, 1.05
No. of reflections6034
No. of parameters311
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.49, 0.81

Computer programs: COLLECT (Nonius, 1999), DENZO-SMN (Otwinowski & Minor, 1997), DENZO-SMN, SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), ORTEX (McArdle, 1995), local program.

Selected geometric parameters (Å, º) top
Cu1—O31.8987 (11)Cu2—Cl322.4517 (7)
Cu1—N41.9460 (19)Cu2—Cl33i2.3944 (7)
Cu1—Cl322.3370 (7)Cu2—Cl342.4353 (6)
Cu1—Cl332.4226 (7)Cu1—Cu23.0570 (4)
Cu1—Cl352.4900 (7)Cu1—Cu2i3.0873 (4)
Cu2—O31.8897 (12)Cu1—Cu1i3.1689 (5)
Cu2—N181.936 (2)Cu2—Cu2i3.1000 (6)
O3—Cu1—N4174.93 (8)N18—Cu2—Cl33i94.33 (7)
O3—Cu1—Cl3287.19 (4)O3—Cu2—Cl3485.37 (5)
N4—Cu1—Cl3296.36 (6)N18—Cu2—Cl3493.31 (6)
O3—Cu1—Cl3383.66 (2)Cl33i—Cu2—Cl34131.71 (2)
N4—Cu1—Cl3397.46 (6)O3—Cu2—Cl3284.12 (2)
Cl32—Cu1—Cl33121.70 (3)N18—Cu2—Cl3298.77 (7)
O3—Cu1—Cl3583.92 (5)Cl33i—Cu2—Cl32118.77 (3)
N4—Cu1—Cl3591.01 (6)Cl34—Cu2—Cl32106.94 (2)
Cl32—Cu1—Cl35131.74 (2)Cu2—O3—Cu2i110.21 (10)
Cl33—Cu1—Cl35104.297 (19)Cu2—O3—Cu1107.593 (12)
O3—Cu2—N18177.07 (7)Cu2—O3—Cu1i109.161 (13)
O3—Cu2—Cl33i84.63 (4)Cu1—O3—Cu1i113.12 (10)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5···Cl350.882.563.079 (2)119
N19—H19···Cl340.882.833.274 (2)113
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds