DNA electrophoresis in microfabricated devices

Kevin D. Dorfman
Rev. Mod. Phys. 82, 2903 – Published 6 October 2010

Abstract

Picking up at the conclusion of Viovy’s review of the physics of gel electrophoresis [J.-L. Viovy, Rev. Mod. Phys. 72, 813 (2000)], this review synthesizes the experimental data, theoretical models, and simulation results for DNA electrophoresis in microfabricated and nanofabricated devices appearing since the seminal paper by Volkmuth and Austin [Nature (London) 358, 600 (1992)]. Prototype versions of these devices separate DNA by molecular weight at a rate far superior to gel electrophoresis. After providing an overview of the requisite background material in polymer physics, electrophoresis, and microfluidic device fabrication, the focus is on the following three generic problems: (i) collision with an isolated post, (ii) transport in an array of posts, and (iii) entropic trapping and filtration in the slit-well motif. The transport phenomena are examined here in the context of the length and time scales characterizing the DNA, the device, and the applied electric field.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
29 More

    DOI:https://doi.org/10.1103/RevModPhys.82.2903

    ©2010 American Physical Society

    Authors & Affiliations

    Kevin D. Dorfman*

    • Department of Chemical Engineering and Materials Science, University of Minnesota–Twin Cities, Minneapolis, Minnesota 55455, USA

    • *dorfman@umn.edu

    Article Text (Subscription Required)

    Click to Expand

    References (Subscription Required)

    Click to Expand
    Issue

    Vol. 82, Iss. 4 — October - December 2010

    Reuse & Permissions
    Access Options
    Author publication services for translation and copyediting assistance advertisement

    Authorization Required


    ×
    ×

    Images

    ×

    Sign up to receive regular email alerts from Reviews of Modern Physics

    Log In

    Cancel
    ×

    Search


    Article Lookup

    Paste a citation or DOI

    Enter a citation
    ×