• Open Access

Minimum-entanglement protocols for function estimation

Adam Ehrenberg, Jacob Bringewatt, and Alexey V. Gorshkov
Phys. Rev. Research 5, 033228 – Published 29 September 2023

Abstract

We derive a family of optimal protocols, in the sense of saturating the quantum Cramér-Rao bound, for measuring a linear combination of d field amplitudes with quantum sensor networks, a key subprotocol of general quantum sensor network applications. We demonstrate how to select different protocols from this family under various constraints. Focusing primarily on entanglement-based constraints, we prove the surprising result that highly entangled states are not necessary to achieve optimality in many cases. Specifically, we prove necessary and sufficient conditions for the existence of optimal protocols using at most k-partite entanglement. We prove that the protocols which satisfy these conditions use the minimum amount of entanglement possible, even when given access to arbitrary controls and ancillas. Our protocols require some amount of time-dependent control, and we show that a related class of time-independent protocols fail to achieve optimal scaling for generic functions.

  • Figure
  • Received 3 September 2022
  • Revised 22 August 2023
  • Accepted 6 September 2023

DOI:https://doi.org/10.1103/PhysRevResearch.5.033228

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Published by the American Physical Society

Physics Subject Headings (PhySH)

Quantum Information, Science & Technology

Authors & Affiliations

Adam Ehrenberg*, Jacob Bringewatt*, and Alexey V. Gorshkov

  • Joint Center for Quantum Information and Computer Science, NIST and University of Maryland College Park, Maryland 20742, USA and Joint Quantum Institute, NIST and University of Maryland College Park, Maryland 20742, USA

  • *These authors contributed equally.

Article Text

Click to Expand

References

Click to Expand
Issue

Vol. 5, Iss. 3 — September - November 2023

Subject Areas
Reuse & Permissions
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Research

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 4.0 International license. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

×

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×