Room-Temperature Ferromagnetism at an Oxide-Nitride Interface

Qiao Jin et al.
Phys. Rev. Lett. 128, 017202 – Published 7 January 2022
PDFHTMLExport Citation

Abstract

Heterointerfaces have led to the discovery of novel electronic and magnetic states because of their strongly entangled electronic degrees of freedom. Single-phase chromium compounds always exhibit antiferromagnetism following the prediction of the Goodenough-Kanamori rules. So far, exchange coupling between chromium ions via heteroanions has not been explored and the associated quantum states are unknown. Here, we report the successful epitaxial synthesis and characterization of chromium oxide (Cr2O3)-chromium nitride (CrN) superlattices. Room-temperature ferromagnetic spin ordering is achieved at the interfaces between these two antiferromagnets, and the magnitude of the effect decays with increasing layer thickness. First-principles calculations indicate that robust ferromagnetic spin interaction between Cr3+ ions via anion-hybridization across the interface yields the lowest total energy. This work opens the door to fundamental understanding of the unexpected and exceptional properties of oxide-nitride interfaces and provides access to hidden phases at low-dimensional quantum heterostructures.

  • Figure
  • Figure
  • Figure
  • Figure
  • Received 18 August 2021
  • Revised 28 October 2021
  • Accepted 1 December 2021

DOI:https://doi.org/10.1103/PhysRevLett.128.017202

© 2022 American Physical Society

Physics Subject Headings (PhySH)

Condensed Matter, Materials & Applied Physics

Authors & Affiliations

Click to Expand

Article Text (Subscription Required)

Click to Expand

Supplemental Material (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 128, Iss. 1 — 7 January 2022

Reuse & Permissions
Access Options
CHORUS

Article Available via CHORUS

Download Accepted Manuscript
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Letters

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×