Classical nucleation theory with a radius-dependent surface tension: A two-dimensional lattice-gas automata model

Joseph Hickey and Ivan L'Heureux
Phys. Rev. E 87, 022406 – Published 20 February 2013

Abstract

The constant surface tension assumption of the Classical Nucleation Theory (CNT) is known to be flawed. In order to probe beyond this limitation, we consider a microscopic, two-dimensional Lattice-Gas Automata (LGA) model of nucleation in a supersaturated system, with model input parameters Ess (solid particle-to-solid particle bonding energy), Esw (solid particle-to-water bonding energy), η (next-to-nearest-neighbor bonding coefficient in solid phase), and Cin (initial solute concentration). The LGA method has the advantages of easy implementation, low memory requirements, and fast computation speed. Analytical results for the system's concentration and the crystal radius as functions of time are derived and the former is fit to the simulation data in order to determine the equilibrium concentration. The “Mean First-Passage Time” technique is used to obtain the nucleation rate and critical nucleus size from the simulation data. The nucleation rate and supersaturation data are evaluated using a modification to the CNT that incorporates a two-dimensional radius-dependent surface tension term. The Tolman parameter, δ, which controls the radius dependence of the surface tension, decreases (increases) as a function of the magnitude of Ess (Esw), at fixed values of η and Esw (Ess). On the other hand, δ increases as η increases while Ess and Esw are held constant. The constant surface tension term of the CNT, Σ0, increases (decreases) with increasing magnitudes of Ess (Esw) at fixed values of Esw (Ess) and increases as η is increased. Σ0 increases linearly as a function of the change in energy during an attachment or detachment reaction, |ΔE|, however, with a slope less than that predicted for a crystal that is uniformly packed at maximum density. These results indicate an increase in the radius-dependent surface tension, Σ, with respect to increasing magnitude of the difference between Ess and Esw.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
4 More
  • Received 9 February 2012

DOI:https://doi.org/10.1103/PhysRevE.87.022406

©2013 American Physical Society

Authors & Affiliations

Joseph Hickey* and Ivan L'Heureux

  • University of Ottawa, 150 Louis Pasteur, Ottawa, Ontario, Canada K1N 6N5

  • *jhick059@uottawa.ca

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 87, Iss. 2 — February 2013

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review E

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×