Disclination loop behavior near the nematic-isotropic transition

N. V. Priezjev and Robert A. Pelcovits
Phys. Rev. E 64, 031710 – Published 29 August 2001
PDFExport Citation

Abstract

We investigate the behavior of disclination loops in the vicinity of the first-order nematic-isotropic transition in the Lebwohl-Lasher and related models. We find that two independent measures of the transition temperature, the free energy, and the distribution of disclination line segments, give essentially identical values. We also calculate the distribution function D(p) of disclination loops of perimeter p and fit it to a quasiexponential form. Below the transition, D(p) falls off exponentially, while in the neighborhood of the transition, it decays with a power-law exponent approximately equal to 2.5, consistent with a “blowout” of loops at the transition. In a modified Lebwohl-Lasher model with a strongly first-order transition we are able to measure a jump in the disclination line tension at the transition, which is too small to be measured in the Lebwohl-Lasher model. We also measure the monopole charge of the disclination loops and find that in both the original and modified Lebwohl-Lasher models, there are large loops that carry monopole charge, while smaller isolated loops do not. Overall, the nature of the topological defects in both models is very similar.

  • Received 23 May 2001

DOI:https://doi.org/10.1103/PhysRevE.64.031710

©2001 American Physical Society

Authors & Affiliations

N. V. Priezjev and Robert A. Pelcovits

  • Department of Physics, Brown University, Providence, Rhode Island 02912

References (Subscription Required)

Click to Expand
Issue

Vol. 64, Iss. 3 — September 2001

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review E

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×