Horizon-absorbed energy flux in circularized, nonspinning black-hole binaries, and its effective-one-body representation

Alessandro Nagar and Sarp Akcay
Phys. Rev. D 85, 044025 – Published 10 February 2012

Abstract

We propose, within the effective-one-body approach, a new, resummed analytical representation of the gravitational-wave energy flux absorbed by a system of two circularized (nonspinning) black holes. This expression is such that it is well-behaved in the strong-field, fast-motion regime, notably up to the effective-one-body-defined last unstable orbit. Building conceptually upon the procedure adopted to resum the multipolar asymptotic energy flux, we introduce a multiplicative decomposition of the multipolar absorbed flux made by three factors: (i) the leading-order contribution, (ii) an “effective source” and (iii) a new residual amplitude correction (ρ˜mH)2. In the test-mass limit, we use a frequency-domain perturbative approach to accurately compute numerically the horizon-absorbed fluxes along a sequence of stable and unstable circular orbits, and we extract from them the functions ρ˜mH. These quantities are then fitted via rational functions. The resulting analytically represented test-mass knowledge is then suitably hybridized with lower-order analytical information that is valid for any mass ratio. This yields a resummed representation of the absorbed flux for a generic, circularized, nonspinning black-hole binary. Our result adds new information to the state-of-the-art calculation of the absorbed flux at fractional 5 post-Newtonian order [S. Taylor and E. Poisson, Phys. Rev. D 78, 084016 (2008)], which is recovered in the weak-field limit approximation by construction.

  • Figure
  • Figure
  • Figure
  • Figure
  • Received 13 December 2011

DOI:https://doi.org/10.1103/PhysRevD.85.044025

© 2012 American Physical Society

Authors & Affiliations

Alessandro Nagar

  • Institut des Hautes Etudes Scientifiques, 91440 Bures-sur-Yvette, France

Sarp Akcay

  • School of Mathematics, University of Southampton, Southampton SO17 1BJ, UK

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 85, Iss. 4 — 15 February 2012

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review D

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×