Insight into the temperature dependent properties of the ferromagnetic Kondo lattice YbNiSn

A. Generalov, D. A. Sokolov, A. Chikina, Yu. Kucherenko, V. N. Antonov, L. V. Bekenov, S. Patil, A. D. Huxley, J. W. Allen, K. Matho, K. Kummer, D. V. Vyalikh, and C. Laubschat
Phys. Rev. B 95, 184433 – Published 30 May 2017
PDFHTMLExport Citation

Abstract

Analyzing temperature dependent photoemission (PE) data of the ferromagnetic Kondo-lattice (KL) system YbNiSn in the light of the periodic Anderson model (PAM) we show that the KL behavior is not limited to temperatures below a temperature T¯K, defined empirically from resistivity and specific heat measurements. As characteristic for weakly hybridized Ce and Yb systems, the PE spectra reveal a 4f-derived Fermi level peak, which reflects contributions from the Kondo resonance and its crystal electric field (CEF) satellites. In YbNiSn this peak has an unusual temperature dependence: With decreasing temperature a steady linear increase of intensity is observed which extends over a large interval ranging from 100 K down to 1 K without showing any peculiarities in the region of T¯KTC=5.6 K. In the light of the single-impurity Anderson model (SIAM) this intensity variation reflects a linear increase of 4f occupancy with decreasing temperature, indicating an onset of Kondo screening at temperatures above 100 K. Within the PAM this phenomenon could be described by a non-Fermi-liquid-like T- linear damping of the self-energy which accounts phenomenologically for the feedback from the closely spaced CEF states.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Received 23 February 2017

DOI:https://doi.org/10.1103/PhysRevB.95.184433

©2017 American Physical Society

Physics Subject Headings (PhySH)

Condensed Matter, Materials & Applied Physics

Authors & Affiliations

A. Generalov1, D. A. Sokolov2,3, A. Chikina4, Yu. Kucherenko5, V. N. Antonov5, L. V. Bekenov5, S. Patil6, A. D. Huxley2, J. W. Allen7, K. Matho8, K. Kummer9, D. V. Vyalikh10,11,12,*, and C. Laubschat4

  • 1MAX IV Laboratory, Lund University, Box 118, 22100 Lund, Sweden
  • 2School of Physics and CSEC, University of Edinburgh, Edinburgh EH9 3FD, United Kingdom
  • 3Max-Planck-Institut für Chemische Physik fester Stoffe, D-01187 Dresden, Germany
  • 4Institut für Festkörperphysik, Technische Universität Dresden, D-01062 Dresden, Germany
  • 5Institute for Metal Physics, National Academy of Science of Ukraine, UA-03142 Kiev, Ukraine
  • 6Department of Physics, Indian Institute of Technology, Banaras Hindu University, Varanasi-225001, India
  • 7Randall Laboratory, University of Michigan, 450 Church St., Ann Arbor, Michigan 48109-1040, USA
  • 8Institut Néel, C.N.R.S. and Université Grenoble Alpes, BP 166, 38042 Grenoble cedex 9, France
  • 9European Synchrotron Radiation Facility, 71 Avenue des Martyrs, Grenoble, France
  • 10Saint Petersburg State University, Physics Department, Saint Petersburg 198504, Russia
  • 11Donostia International Physics Center (DIPC), Departamento de Fisica de Materiales and CFM-MPC UPV/EHU, 20080 San Sebastian, Spain
  • 12IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain

  • *Corresponding author: Denis.Vyalikh@dipc.org

Article Text (Subscription Required)

Click to Expand

Supplemental Material (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 95, Iss. 18 — 1 May 2017

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×