Hybrid DFT calculation of Fe57 NMR resonances and orbital order in magnetite

C. H. Patterson
Phys. Rev. B 90, 075134 – Published 20 August 2014
PDFHTMLExport Citation

Abstract

The crystal structure and charge and orbital order of magnetite below the Verwey temperature are calculated using a first-principles hybrid density functional theory (DFT) method. The initial atomic positions in the crystal-structure calculation are those recently refined from x-ray diffraction data for the Cc space-group unit cell [Senn, Wright, and Attfield, Nature (London) 481, 173 (2012)]. Fermi contact and magnetic dipolar contributions to hyperfine fields at Fe57 nuclei obtained from hybrid DFT calculations are used to obtain NMR resonance frequencies for magnetite for a range of external magnetic field directions in a relatively weak field. NMR frequencies from hybrid density functional theory calculations are compared to NMR data [M. Mizoguchi, J. Phys. Soc. Jpn. 70, 2333 (2001)] for a range of applied magnetic field directions. NMR resonance frequencies of B-site Fe ions show large relative variations with applied field direction owing to anisotropic hyperfine fields from charge and orbital ordered Fe 3d minority-spin electrons at those sites. Good agreement between computed and measured NMR resonance frequencies confirms the pattern of charge and orbital order obtained from calculations. The charge and orbital order of magne-tite in its low-temperature phase obtained from hybrid DFT calculations is analyzed in terms of one-electron bonds between Fe ions. The Verwey transition in magnetite therefore resembles Mott-Peierls transitions in vanadium oxides which undergo symmetry-breaking transitions owing to electron-pair bond formation.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
2 More
  • Received 4 July 2014
  • Revised 5 August 2014

DOI:https://doi.org/10.1103/PhysRevB.90.075134

©2014 American Physical Society

Authors & Affiliations

C. H. Patterson

  • School of Physics, Trinity College Dublin, Dublin 2, Ireland

Article Text (Subscription Required)

Click to Expand

Supplemental Material (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 90, Iss. 7 — 15 August 2014

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×