• Open Access

Effective calculation of laser stripping via a broad shape resonance

T. Gorlov and V. Danilov
Phys. Rev. ST Accel. Beams 13, 074002 – Published 23 July 2010

Abstract

This paper presents the theory and method of calculation of laser assisted charge exchange injection via a broad shape resonance of the hydrogen atom with a new level of accuracy. The method is optimized for fast calculations, needed for practical estimations of laser-stripping efficiency for charge exchange injection. The novelty is that we take into account the resonance width and continuous spectrum of the hydrogen atom in our model. As a result we show that the broad shape resonance can fully compensate the Doppler broadening of the laser frequency in realistic beams without applying laser chirp and increasing laser power. The resulting scheme can be realized by applying a magnetic field of optimal strength to the high-energy beam irradiated by laser field. Another novelty is that we use the temporal Schrödinger equation as the basis of our model in contrast with the existing method of semiempirical cross sections, which is widely considered in atomic physics. The strict quantum mechanical approach gives the temporal evolution of the wave function and the ionization probability of the hydrogen atom as a function of laser and static electric fields. Moreover, it reveals quantum effects at the strong laser field which cannot be described with the cross section treatment. It is shown that the effects play a significant role in the optimization of the magnetic field for the laser-stripping scheme.

  • Figure
  • Figure
  • Figure
  • Figure
  • Received 15 April 2010

DOI:https://doi.org/10.1103/PhysRevSTAB.13.074002

This article is available under the terms of the Creative Commons Attribution 3.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.

Authors & Affiliations

T. Gorlov and V. Danilov

  • Spallation Neutron Source, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA

Article Text

Click to Expand

References

Click to Expand
Issue

Vol. 13, Iss. 7 — July 2010

Reuse & Permissions
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Accelerators and Beams

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 3.0 License. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

×

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×