• Open Access

Hierarchical mean-field T operator bounds on electromagnetic scattering: Upper bounds on near-field radiative Purcell enhancement

Sean Molesky, Pengning Chao, and Alejandro W. Rodriguez
Phys. Rev. Research 2, 043398 – Published 21 December 2020

Abstract

We present a general framework, based on Lagrange duality, for computing physical bounds on a wide array of electromagnetic scattering problems. Namely, we show that, via projections into increasingly localized spatial clusters, the central equality of scattering theory—the definition of the T operator—can be used to generate a hierarchy of increasingly accurate mean-field approximations (enforcing local power conservation) that naturally complement the standard design problem of optimizing some objective with respect to structural degrees of freedom. Utilizing the systematic control over the spatial extent of local violations of physics offered by the approach, proof-of-concept application to maximizing radiative Purcell enhancement for a dipolar current source in the vicinity of a structured medium, an effect central to many sensing and quantum technologies, yields bounds that are often more than an order of magnitude tighter than past results, highlighting the need for a theory capable of accurately handling differing domain and field-localization length scales. Similar to related domain decomposition and multigrid notions, analogous constructions are possible in any branch of wave physics, providing a unified approach for investigating fundamental limits.

  • Figure
  • Figure
  • Received 15 September 2020
  • Accepted 24 November 2020

DOI:https://doi.org/10.1103/PhysRevResearch.2.043398

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Published by the American Physical Society

Physics Subject Headings (PhySH)

General PhysicsAtomic, Molecular & Optical

Authors & Affiliations

Sean Molesky*, Pengning Chao*, and Alejandro W. Rodriguez

  • Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA

  • *These authors contributed equally to this work.
  • arod@princeton.edu

Article Text

Click to Expand

References

Click to Expand
Issue

Vol. 2, Iss. 4 — December - December 2020

Subject Areas
Reuse & Permissions
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Research

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 4.0 International license. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

×

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×