• Open Access

Global T operator bounds on electromagnetic scattering: Upper bounds on far-field cross sections

Sean Molesky, Pengning Chao, Weiliang Jin, and Alejandro W. Rodriguez
Phys. Rev. Research 2, 033172 – Published 30 July 2020

Abstract

We present a method based on the scattering T operator, and conservation of net real and reactive power, to provide physical bounds on any electromagnetic design objective that can be framed as a net radiative emission, scattering or absorption process. Application of this approach to plane-wave scattering from an arbitrarily shaped, compact body of homogeneous electric susceptibility χ is found to predictively quantify and differentiate the relative performance of dielectric and metallic materials across all optical length scales. When the size of a device is restricted to be much smaller than the wavelength (a subwavelength cavity, antenna, nanoparticle, etc.), the maximum cross-section enhancement that may be achieved via material structuring is found to be much weaker than prior predictions: the response of strong metals (Reχ0) exhibits a diluted (homogenized) effective medium scaling χ/Imχ; below a threshold size inversely proportional to the index of refraction (consistent with the half-wavelength resonance condition), the maximum cross-section enhancement possible with dielectrics (Reχ>0) shows the same material dependence as Rayleigh scattering. In the limit of a bounding volume much larger than the wavelength in all dimensions, achievable scattering interactions asymptote to the geometric area, as predicted by ray optics. For representative metal and dielectric materials, geometries capable of scattering power from an incident plane wave within an order of magnitude (typically a factor of two) of the bound are discovered by inverse design. The basis of the method rests entirely on scattering theory and can thus likely be applied to acoustics, quantum mechanics, and other wave physics.

  • Figure
  • Figure
  • Figure
  • Figure
  • Received 27 March 2020
  • Revised 17 June 2020
  • Accepted 10 July 2020

DOI:https://doi.org/10.1103/PhysRevResearch.2.033172

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Published by the American Physical Society

Physics Subject Headings (PhySH)

Atomic, Molecular & OpticalGeneral Physics

Authors & Affiliations

Sean Molesky1,*, Pengning Chao1,*, Weiliang Jin2, and Alejandro W. Rodriguez1,†

  • 1Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA
  • 2Department of Electrical Engineering, Stanford University, Stanford, California 94305, USA

  • *These authors contributed equally to this work.
  • arod@princeton.edu

Article Text

Click to Expand

References

Click to Expand
Issue

Vol. 2, Iss. 3 — July - September 2020

Subject Areas
Reuse & Permissions
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Research

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 4.0 International license. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

×

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×