Evidence of direct electronic band gap in two-dimensional van der Waals indium selenide crystals

Hugo Henck, Debora Pierucci, Jihene Zribi, Federico Bisti, Evangelos Papalazarou, Jean-Christophe Girard, Julien Chaste, François Bertran, Patrick Le Fèvre, Fausto Sirotti, Luca Perfetti, Christine Giorgetti, Abhay Shukla, Julien E. Rault, and Abdelkarim Ouerghi
Phys. Rev. Materials 3, 034004 – Published 25 March 2019
PDFHTMLExport Citation

Abstract

Metal monochalcogenide compounds offer a large variety of electronic properties depending on chemical composition, number of layers, and stacking order. Among them, the InSe has attracted much attention due to the promise of outstanding electronic properties, attractive quantum physics, and high photoresponse. Precise experimental determination of the electronic structure of InSe is sorely needed for better understanding of potential properties and device applications. Here, combining scanning tunneling spectroscopy (STS) and two-photon photoemission spectroscopy, we demonstrate that InSe exhibits a direct band gap of about 1.25 eV located at the Γ point of the Brillouin zone. STS measurements underline the presence of a finite and almost constant density of states (DOS) near the conduction-band minimum. This particular DOS is generated by a poorly dispersive nature of the top valence band, as shown by angle-resolved photoemission spectroscopy (ARPES) investigation. In fact, a hole effective mass of about m*/m0=0.95 (ΓK¯ direction) was measured. Moreover, using ARPES measurements a spin-orbit splitting of the deeper-lying bands of about 0.35 eV was evidenced. These findings allow a deeper understanding of the InSe electronic properties underlying the potential of III-VI semiconductors for electronic and photonic technologies.

  • Figure
  • Figure
  • Figure
  • Figure
  • Received 12 December 2018

DOI:https://doi.org/10.1103/PhysRevMaterials.3.034004

©2019 American Physical Society

Physics Subject Headings (PhySH)

Condensed Matter, Materials & Applied Physics

Authors & Affiliations

Hugo Henck1, Debora Pierucci2, Jihene Zribi1, Federico Bisti2, Evangelos Papalazarou3, Jean-Christophe Girard1, Julien Chaste1, François Bertran4, Patrick Le Fèvre4, Fausto Sirotti5, Luca Perfetti6, Christine Giorgetti6, Abhay Shukla7, Julien E. Rault4, and Abdelkarim Ouerghi1

  • 1Centre de Nanosciences et de Nanotechnologies, Centre National de la Recherche Scientifique, Université Paris-Sud, Université Paris-Saclay, C2N-Marcoussis, 91460 Marcoussis, France
  • 2CELLS-ALBA Synchrotron Radiation Facility, Carrer de la Llum 2-26, 08290 Cerdanyola del Valles, Barcelona, Spain
  • 3Laboratoire de Physique des Solides, Centre National de la Recherche Scientifique, Université Paris-Saclay, Université Paris-Sud, 91405 Orsay, France
  • 4Synchrotron-SOLEIL, Saint-Aubin, BP48, F91192 Gif sur Yvette Cedex, France
  • 5Laboratoire de Physique de la Matière Condensée, Ecole Polytechnique, Centre National de la Recherche Scientifique, Université Paris Saclay, 91128 Palaiseau Cedex, France
  • 6Laboratoire des Solides Irradiés, Ecole Polytechnique, Centre National de la Recherche Scientifique, CEA, Université Paris-Saclay, 91128 Palaiseau Cedex, France
  • 7Institut de Minéralogie de Physique des Matériaux et de Cosmochimie, Sorbonne Universités, UPMC Université Paris 06, UMR Centre National de la Recherche Scientifique 7590, Muséum National d'Histoire Naturelle, IRD UMR 206, 4 Place Jussieu, 75005 Paris, France

Article Text (Subscription Required)

Click to Expand

Supplemental Material (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 3, Iss. 3 — March 2019

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Materials

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×