• Open Access

Capturing Brownian dynamics with an on-lattice model of hard-sphere diffusion

Claudia Cianci, Stephen Smith, and Ramon Grima
Phys. Rev. E 95, 052118 – Published 11 May 2017

Abstract

Conventional master equation approaches approximate the diffusion of molecules in continuum space by the process of particles hopping on a spatial lattice. The hopping probability from one voxel (spatial lattice point) to its neighbor is usually considered to be constant throughout space. Such an assumption is only consistent with pointlike molecules and thus neglects volume-exclusion effects due to finite particle size. A few studies have attempted to introduce volume-exclusion effects by choosing the hopping probability from one voxel to a neighboring one to be a linear function of the number density. Here, we formulate an alternative master equation in which the hopping probability is equal to the fraction of available space in the neighboring voxel as estimated using scaled particle theory. This leads to the hopping probability being a nonlinear function of the number density. A mean-field approximation (mfa) leads to a partial differential equation of the advection-diffusion type. We show that the time evolution of the particle number density sampled using the stochastic simulation algorithm associated with the new master equation and the number density obtained by numerical integration of the mfa are in good agreement with each other. They are also distinctly different than the time evolution predicted by the conventional master equation and those with hopping probabilities which are linear functions of the number density. The results from the new lattice description are also shown to be in very good agreement with the lattice-free method of Brownian dynamics, even for highly crowded scenarios.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Received 4 October 2016
  • Revised 13 February 2017

DOI:https://doi.org/10.1103/PhysRevE.95.052118

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Published by the American Physical Society

Physics Subject Headings (PhySH)

Statistical Physics & ThermodynamicsPhysics of Living Systems

Authors & Affiliations

Claudia Cianci, Stephen Smith, and Ramon Grima

  • School of Biological Sciences, University of Edinburgh, Mayfield Road, Edinburgh EH93JR Scotland, United Kingdom

Article Text

Click to Expand

References

Click to Expand
Issue

Vol. 95, Iss. 5 — May 2017

Reuse & Permissions
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review E

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 4.0 International license. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

×

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×