Cosmic-ray transport from AMS-02 boron to carbon ratio data: Benchmark models and interpretation

Y. Génolini, M. Boudaud, P.-I. Batista, S. Caroff, L. Derome, J. Lavalle, A. Marcowith, D. Maurin, V. Poireau, V. Poulin, S. Rosier, P. Salati, P. D. Serpico, and M. Vecchi
Phys. Rev. D 99, 123028 – Published 28 June 2019

Abstract

This article aims at establishing new benchmark scenarios for Galactic cosmic-ray propagation in the GV-TV rigidity range, based on fits to the AMS-02 boron to carbon ratio (B/C) data with the usine v3.5 propagation code. We employ a new fitting procedure, cautiously taking into account data systematic error correlations in different rigidity bins and considering Solar modulation potential and leading nuclear cross section as nuisance parameters. We delineate specific low, intermediate, and high-rigidity ranges that can be related to both features in the data and peculiar microphysics mechanisms resulting in spectral breaks. We single out a scenario which yields excellent fits to the data and includes all the presumably relevant complexity, the BIG model. This model has two limiting regimes: (i) the SLIM model, a minimal diffusion-only setup, and (ii) the QUAINT model, a convection-reacceleration model where transport is tuned by nonrelativistic effects. All models lead to robust predictions in the high-energy regime (10GV), i.e., independent of the propagation scenario: at 1σ, the diffusion slope δ is [0.43–0.53], whereas K10, the diffusion coefficient at 10 GV, is [0.260.36]kpc2Myr1; we confirm the robustness of the high-energy break, with a typical value Δh0.2. We also find a hint for a similar (reversed) feature at low rigidity around the B/C peak (4GV) which might be related to some effective damping scale in the magnetic turbulence.

  • Figure
  • Figure
  • Figure
  • Figure
  • Received 30 April 2019

DOI:https://doi.org/10.1103/PhysRevD.99.123028

© 2019 American Physical Society

Physics Subject Headings (PhySH)

Gravitation, Cosmology & Astrophysics

Authors & Affiliations

Y. Génolini1,*, M. Boudaud2,†, P.-I. Batista3, S. Caroff4, L. Derome5, J. Lavalle6,‡, A. Marcowith6, D. Maurin5, V. Poireau7, V. Poulin6, S. Rosier7, P. Salati8, P. D. Serpico8,§, and M. Vecchi3,9

  • 1Service de Physique Théorique, Université Libre de Bruxelles, Boulevard du Triomphe, CP225, 1050 Brussels, Belgium
  • 2LPTHE, Sorbonne Université & CNRS, 4 Place Jussieu, 75252 Paris Cedex 05, France
  • 3Instituto de Física de São Carlos, Universidade de São Paulo, CP 369, 13560-970 São Carlos, SP, Brazil
  • 4Sorbonne Universités, UPMC Université Paris 06, Université Paris Diderot, Sorbonne Paris Cité, CNRS, Laboratoire de Physique Nucléaire et de Hautes Energies (LPNHE), 4 place Jussieu, F-75252 Paris Cedex 5, France
  • 5LPSC, Université Grenoble Alpes, CNRS/IN2P3, 53 avenue des Martyrs, 38026 Grenoble, France
  • 6LUPM, CNRS & Université de Montpellier (UMR-5299), Place Eugène Bataillon, F-34095 Montpellier Cedex 05, France
  • 7Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, LAPP, F-74940 Annecy, France
  • 8Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, LAPTh, F-74940 Annecy, France
  • 9KVI-Center for Advanced Radiation Technology, University of Groningen, 9747 Groningen, Netherlands

  • *yoann.genolini@ulb.ac.be
  • boudaud@lpthe.jussieu.fr
  • lavalle@in2p3.fr
  • §serpico@lapth.cnrs.fr

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 99, Iss. 12 — 15 June 2019

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review D

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×