• Open Access

Search for supersymmetry using razor variables in events with b-tagged jets in pp collisions at s=8TeV

V. Khachatryan et al. (CMS Collaboration)
Phys. Rev. D 91, 052018 – Published 23 March 2015

Abstract

An inclusive search for supersymmetry in events with at least one b-tagged jet is performed using proton-proton collision data collected by the CMS experiment in 2012 at a center-of-mass energy of 8 TeV. The data set size corresponds to an integrated luminosity of 19.3fb1. The two-dimensional distribution of the razor variables R2 and MR is studied in events with and without leptons. The data are found to be consistent with the expected background, which is modeled with an empirical function. Exclusion limits on supersymmetric particle masses at a 95% confidence level are derived in several simplified supersymmetric scenarios for several choices of the branching fractions. By combining the likelihoods of a search in events without leptons and a search that requires a single lepton (electron or muon), an improved bound on the top-squark mass is obtained. Assuming the lightest supersymmetric particle to be stable and weakly interacting, and to have a mass of 100 GeV, the branching-fraction-dependent (-independent) production of gluinos is excluded for gluino masses up to 1310 (1175) GeV. The corresponding limit for top-squark pair production is 730 (645) GeV.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
10 More
  • Received 1 February 2015

DOI:https://doi.org/10.1103/PhysRevD.91.052018

This article is available under the terms of the Creative Commons Attribution 3.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.

© 2015 CERN, for the CMS Collaboration

Authors & Affiliations

Click to Expand

Article Text

Click to Expand

References

Click to Expand
Issue

Vol. 91, Iss. 5 — 1 March 2015

Reuse & Permissions

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review D

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 3.0 License. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

×

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×