Exact renormalization group and higher-spin holography

Robert G. Leigh, Onkar Parrikar, and Alexander B. Weiss
Phys. Rev. D 91, 026002 – Published 6 January 2015

Abstract

In this paper, we revisit scalar field theories in d space-time dimensions possessing U(N) global symmetry. Following our recent work [1], we consider the generating function of correlation functions of all U(N)-invariant, single-trace operators at the free-fixed point. The exact renormalization group equations are cast as Hamilton equations of radial evolution in a model space-time of one higher dimension, in this case AdSd+1. The geometry associated with the renormalization group equations is seen to emerge naturally out of the infinite jet bundle corresponding to the field theory and suggests their interpretation as higher-spin equations of motion. While the higher-spin equations we obtain are remarkably simple, they are nonlocal in an essential way. Nevertheless, solving these bulk equations of motion in terms of a boundary source, we derive the on-shell action and demonstrate that it correctly encodes all of the correlation functions of the field theory, written as “Witten diagrams.” Since the model space-time has the isometries of the fixed point, it is possible to construct new higher-spin theories defined in terms of geometric structures over other model space-times. We illustrate this by explicitly constructing the higher-spin renormalization group equations corresponding to the z=2 nonrelativistic free field theory in D spatial dimensions. In this case, the model space-time is the Schrödinger space-time, SchrD+3.

  • Figure
  • Figure
  • Figure
  • Received 3 November 2014

DOI:https://doi.org/10.1103/PhysRevD.91.026002

© 2015 American Physical Society

Authors & Affiliations

Robert G. Leigh, Onkar Parrikar, and Alexander B. Weiss

  • Department of Physics, University of Illinois, 1110 West Green Street, Urbana, Illinois 61801-3080, USA

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 91, Iss. 2 — 15 January 2015

Reuse & Permissions
Access Options
CHORUS

Article Available via CHORUS

Download Accepted Manuscript
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review D

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×