• Open Access

Compact objects in and beyond the standard model from nonperturbative vacuum scalarization

Loris Del Grosso, Paolo Pani, and Alfredo Urbano
Phys. Rev. D 109, 095006 – Published 6 May 2024

Abstract

We consider a theory in which a real scalar field is Yukawa coupled to a fermion and has a potential with two nondegenerate vacua. If the coupling is sufficiently strong, a collection of N fermions deforms the true vacuum state, creating energetically favored false-vacuum pockets in which fermions are trapped. We embed this model within general relativity and prove that it admits self-gravitating compact objects where the scalar field acquires a nontrivial profile due to nonperturbative effects. We discuss some applications of this general mechanism: (i) “neutron soliton stars” in low-energy effective QCD, which naturally happen to have masses around 2M and radii around 10 km even without neutron interactions; (ii) “Higgs false-vacuum pockets” in and beyond the standard model; (iii) “dark soliton stars” in models with a dark sector. In the latter two examples, we find compelling solutions naturally describing centimeter-size compact objects with masses around 106M, intriguingly in a range compatible with the Optical Gravitational Lensing Experiment(OGLE)+Hyper Suprime-Cam (HSC) microlensing anomaly. In addition to these interesting examples, the mechanism of nonperturbative vacuum scalarization may play a role in various contexts in and beyond the standard model, providing a support mechanism for new compact objects that can form in the early Universe, can collapse into primordial black holes through accretion past their maximum mass, and serve as dark matter candidates.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Received 20 January 2024
  • Accepted 26 March 2024

DOI:https://doi.org/10.1103/PhysRevD.109.095006

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI. Funded by SCOAP3.

Published by the American Physical Society

Physics Subject Headings (PhySH)

Gravitation, Cosmology & AstrophysicsParticles & Fields

Authors & Affiliations

Loris Del Grosso, Paolo Pani, and Alfredo Urbano

  • Dipartimento di Fisica, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185, Roma, Italy and INFN, Sezione di Roma, Piazzale Aldo Moro 2, 00185, Roma, Italy

Article Text

Click to Expand

References

Click to Expand
Issue

Vol. 109, Iss. 9 — 1 May 2024

Reuse & Permissions
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review D

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 4.0 International license. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

×

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×