Effect of subvolume excitation and spin-torque efficiency on magnetic switching

J. Z. Sun, R. P. Robertazzi, J. Nowak, P. L. Trouilloud, G. Hu, D. W. Abraham, M. C. Gaidis, S. L. Brown, E. J. O’Sullivan, W. J. Gallagher, and D. C. Worledge
Phys. Rev. B 84, 064413 – Published 19 August 2011

Abstract

Recently developed magnetic tunnel junctions with full perpendicular magnetization that are spin-torque switchable allow for quantitative comparison of spin-torque switching statistics with a macrospin model. For typical devices above 50 nm in lateral size, the comparison suggests the presence of subvolume magnetic excitations which often dominate the switching process and which degrade the spin-torque switching efficiency. A simple model of subvolume spin-torque-driven magnetic switching is presented to account for the experimental observations. The origin of the subvolume thermal excitation is traced to a competition between the macrospin fluctuation within a simple uniaxial anisotropy potential and that of thermal magnon excitation. The subvolume excitation problem highlights the importance of improving the magnetic exchange stiffness of the junction free layer, and the reduction of junction lateral sizes below 50 nm where an improved spin-torque efficiency is seen as the switching dynamics cross over to a more macrospin-like process.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Received 16 March 2011

DOI:https://doi.org/10.1103/PhysRevB.84.064413

©2011 American Physical Society

Authors & Affiliations

J. Z. Sun, R. P. Robertazzi, J. Nowak, P. L. Trouilloud, G. Hu, D. W. Abraham, M. C. Gaidis, S. L. Brown, E. J. O’Sullivan, W. J. Gallagher, and D. C. Worledge

  • IBM-MagIC MRAM Development Alliance, IBM T. J. Watson Research Center, P. O. Box 218, Yorktown Heights, New York 10598, USA

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 84, Iss. 6 — 1 August 2011

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×