Movement of interstitial clusters in stress gradients of grain boundaries

M. Samaras, P. M. Derlet, H. Van Swygenhoven, and M. Victoria
Phys. Rev. B 68, 224111 – Published 30 December 2003
PDFExport Citation

Abstract

Simulations of nanocrystalline materials reveal that the pressure gradient present within the structure can play a key role in the movement of self-interstitial atoms (SIA’s) to surrounding grain boundaries and therefore in the resulting defect structure formed during displacement cascades. Initially SIA’s sense the grain boundary region as a “defect collector plate,” a two-dimensional (2D) indistinguishable region under tension to which they are attracted. The SIA’s approach the “defect collector plate” and at a certain distance are able to distinguish the local variations in pressure specific to the particular grain boundary misorientation, changing their direction in response to the local pressure environment. Consequently even large SIA clusters undergo a change in direction, moving 1D/3D in order to reach and follow a lower compressive and where possible a tensile pressure path to the grain boundary.

  • Received 25 June 2003

DOI:https://doi.org/10.1103/PhysRevB.68.224111

©2003 American Physical Society

Authors & Affiliations

M. Samaras, P. M. Derlet, and H. Van Swygenhoven

  • Paul Scherrer Institute, 5232 Villigen, Switzerland

M. Victoria

  • CRPP-Fusion Technology Materials, EPFL, CH-5232 Villigen-PSI, Switzerland

References (Subscription Required)

Click to Expand
Issue

Vol. 68, Iss. 22 — 1 December 2003

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×