Spectral and temporal characterization of a fused-quartz-microresonator optical frequency comb

Scott B. Papp and Scott A. Diddams
Phys. Rev. A 84, 053833 – Published 17 November 2011

Abstract

We report on the fabrication of high-Q, fused-quartz microresonators and the parametric generation of a frequency comb with 36-GHz line spacing using them. We have characterized the intrinsic stability of the comb in both the time and frequency domains to assess its suitability for future precision metrology applications. Intensity autocorrelation measurements and line-by-line comb control reveal near-transform-limited picosecond pulse trains that are associated with good relative phase and amplitude stability of the comb lines. The comb's 36-GHz line spacing can be readily photodetected, which enables measurements of its intrinsic and absolute phase fluctuations.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Received 24 June 2011

DOI:https://doi.org/10.1103/PhysRevA.84.053833

Published by the American Physical Society

Authors & Affiliations

Scott B. Papp* and Scott A. Diddams

  • National Institute of Standards and Technology, Boulder, Colorado 80305, USA

  • *scott.papp@nist.gov

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 84, Iss. 5 — November 2011

Reuse & Permissions
Access Options

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review A

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×