Optomechanical trapping and cooling of partially reflective mirrors

M. Bhattacharya, H. Uys, and P. Meystre
Phys. Rev. A 77, 033819 – Published 7 March 2008

Abstract

We consider the radiative trapping and cooling of a partially reflecting mirror suspended inside an optical cavity, generalizing the case of a perfectly reflecting mirror previously considered [M. Bhattacharya and P. Meystre, Phys. Rev. Lett. 99, 073601 (2007)]. This configuration was recently used in an experiment to cool a nanometers-thick dielectric membrane [J. D. Thompson et al., e-print arXiv:0707.1724v2]. The self-consistent cavity field modes of this system depend strongly on the position of the middle mirror, leading to important qualitative differences in the radiation pressure effects: in one case, the situation is similar to that of a perfectly reflecting middle mirror, with only minor quantitative modifications. In addition, we also identify a range of mirror positions for which the radiation-mirror-coupling becomes purely dispersive and the back-action effects that usually lead to cooling are absent, although the mirror can still be optically trapped. The existence of these two regimes leads us to propose a bichromatic scheme that optimizes the cooling and trapping of partially reflective mirrors.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Received 29 August 2007

DOI:https://doi.org/10.1103/PhysRevA.77.033819

©2008 American Physical Society

Authors & Affiliations

M. Bhattacharya, H. Uys, and P. Meystre

  • B2 Institute, Department of Physics and College of Optical Sciences, The University of Arizona, Tucson, Arizona 85721, USA

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 77, Iss. 3 — March 2008

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review A

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×