Control of cellular automata

Franco Bagnoli, Raúl Rechtman, and Samira El Yacoubi
Phys. Rev. E 86, 066201 – Published 4 December 2012

Abstract

We study the problem of master-slave synchronization and control of totalistic cellular automata. The synchronization mechanism is that of setting a fraction of sites of the slave system equal to those of the master one (pinching synchronization). The synchronization observable is the distance between the two configurations. We present three control strategies that exploit local information (the number of nonzero first-order Boolean derivatives) in order to choose the sites to be synchronized. When no local information is used, we speak of simple pinching synchronization. We find the critical properties of control and discuss the best control strategy compared with simple synchronization.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Received 12 June 2012

DOI:https://doi.org/10.1103/PhysRevE.86.066201

©2012 American Physical Society

Authors & Affiliations

Franco Bagnoli*

  • Dipartimento di Energetica and CSDC, Università di Firenze, Via S. Marta 3, I-50139 Firenze, Italy and INFN, sez. Firenze, Italy

Raúl Rechtman

  • Centro de Investigación en Energía, Universidad Nacional Autónoma de México, Apdo. Postal 34, 62580 Temixco, Morelos, Mexico

Samira El Yacoubi

  • Institut de Modélisation et Analyse en Géo-Environnement et Santé (IMAGES), Université de Perpignan, 52, Paul Alduy Avenue, 66860–Perpignan Cedex, France

  • *franco.bagnoli@unifi.it
  • rrs@cie.unam.mx
  • yacoubi@univ-perp.fr

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 86, Iss. 6 — December 2012

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review E

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×