Magnetic properties of first-row element-doped ZnS semiconductors: A density functional theory investigation

Run Long and Niall J. English
Phys. Rev. B 80, 115212 – Published 22 September 2009

Abstract

Based on first-principles calculations, we have investigated the magnetic properties of the first-row element-doped ZnS semiconductors. Calculations reveal that Be, B, and C dopants can induce magnetism while N cannot lead to spin polarization in ZnS. A possible explanation has been rationalized from the elements’ electronegativity and interaction between dopant and host atoms. The total magnetic moments are 2.00, 3.16, and 2.38μB per 2×2×2 supercell for Be, B, and C doping, respectively, and ferromagnetic coupling is generally observed in these cases. The ferromagnetism of Be-, B-, and C-doped ZnS can be explained by hole-mediated sp or pp interactions’ coupling mechanisms. The clustering effect was found to be present in Be-, B-, and C-doped ZnS but the degree is more obvious in the former two cases than in the latter case. Analysis revealed that C-doped ZnS displays better potential ferromagnetic behavior than Be- and B-doped ZnS due to its semimetallic characteristics.

  • Figure
  • Figure
  • Figure
  • Received 21 May 2009

DOI:https://doi.org/10.1103/PhysRevB.80.115212

©2009 American Physical Society

Authors & Affiliations

Run Long and Niall J. English

  • The SEC Strategic Research Cluster and the Centre for Synthesis and Chemical Biology, Conway Institute of Biomolecular and Biomedical Research, School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin 4, Ireland

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 80, Iss. 11 — 15 September 2009

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×