Electronic states in GeSi quantum dots with type-II band alignment initiated by space-charge spectroscopy

A. I. Yakimov, A. V. Dvurechenskii, A. I. Nikiforov, A. A. Bloshkin, A. V. Nenashev, and V. A. Volodin
Phys. Rev. B 73, 115333 – Published 27 March 2006

Abstract

Space-charge spectroscopy was employed to study electronic structure of a stack of four layers of Ge quantum dots (QD’s) coherently embedded in an n-type Si(001) matrix. Evidence for an electron confinement in Si in the vicinity of neutral Ge dots was found. From the temperature- and frequency-dependent measurements the electron binding energy was determined to be 50meV. Existence of localized electronic states is explained by a modification of the conduction band alignment induced by inhomogeneous tensile strain in Si around the buried Ge dots. To support experimental results we performed numerical analysis of three-dimensional strain distribution and electronic structure of the sample under investigation. The strain distribution was found in terms of atomic positions using a valence-force-field model with a Keating interatomic potential. The electronic energy levels were calculated by solving a three-dimensional effective mass Schrödinger equation. The carrier confinement potential in this equation is modified by the strain distribution. The calculated confined eigenenergies agree with our experimental values deduced from the admittance spectroscopy. The data obtained in this work may serve as a guideline to interpret efficient photo- and electroluminescence as well as enhanced quantum efficiency of photodetectors and solar cells with Ge QD’s stacked in a multilayer structure.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
6 More
  • Received 23 September 2005

DOI:https://doi.org/10.1103/PhysRevB.73.115333

©2006 American Physical Society

Authors & Affiliations

A. I. Yakimov*, A. V. Dvurechenskii, A. I. Nikiforov, A. A. Bloshkin, A. V. Nenashev, and V. A. Volodin

  • Institute of Semiconductor Physics, Siberian Branch of the Russian Academy of Sciences, prospekt Lavrent’eva 13, 630090 Novosibirsk, Russia

  • *Electronic address: yakimov@isp.nsc.ru

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 73, Iss. 11 — 15 March 2006

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×