1887

Abstract

Equine rhinitis A virus (ERAV) is a member of the genus , family , and causes respiratory disease in horses worldwide. To characterize the putative receptor molecule(s) of the ERAV isolate 393/76 (ERAV.393/76) on the surface of Vero and other cells, an assay was developed to measure the binding of purified biotinylated ERAV.393/76 virions to cells by flow cytometry. Using this assay, the level of binding to different cell types correlated with the relative infectivity of ERAV in each cell type. In particular, equine fetal kidney cells, mouse fibroblast cells, rabbit kidney-13 and Crandell feline kidney cells bound virus at high levels and produced high virus yields (⩾10 TCID ml). Madin–Darby bovine kidney and baby hamster kidney cells showed little or no binding of virus, producing yields of ⩽10 TCID ml. Treatment of Vero and other cells with sodium periodate and the metabolic inhibitors tunicamycin, benzyl -acetyl---galactosamide, ,-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol and proteases indicated that part of the receptor-binding and entry complex for ERAV.393/76 is on -linked carbohydrates and that the carbohydrate is likely to be present on a protein rather than a lipid backbone. The effect of carbohydrate-specific lectins and neuraminidases on ERAV.393/76 binding and infection of Vero and other cell types implicated 2,3-linked sialic acid residues on the carbohydrate complex in the binding and infection of ERAV.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.80207-0
2004-09-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/jgv/85/9/vir852535.html?itemId=/content/journal/jgv/10.1099/vir.0.80207-0&mimeType=html&fmt=ahah

References

  1. Alberts B., Bray D., Lewis J., Raff M., Roberts K., Watson J. D. 1989 Molecular Biology of the Cell , 2nd edn. New York & London: Garland Publishing;
    [Google Scholar]
  2. Alexander D. A., Dimmock K. 2002; Sialic acid functions in enterovirus 70 binding and infection. J Virol 76:11265–11272 [CrossRef]
    [Google Scholar]
  3. Allaway G. P., Burness A. T. H. 1987; Analysis of the bond between encephalomyocarditis virus and its human erythrocyte receptor by affinity chromatography on virus–sepharose columns. J Gen Virol 68:1849–1856 [CrossRef]
    [Google Scholar]
  4. Arnberg N., Edlund K., Kidd A. H., Wadell G. 2000; Adenovirus type 37 uses sialic acid as a cellular receptor. J Virol 74:42–48 [CrossRef]
    [Google Scholar]
  5. Baranowski E., Sevilla N., Verdaguer N., Ruiz-Jarabo C. M., Beck E., Domingo E. 1998; Multiple virulence determinants of foot-and-mouth disease virus in cell culture. J Virol 72:6362–6372
    [Google Scholar]
  6. Baxt B., Mason P. W. 1995; Foot-and-mouth disease virus undergoes restricted replication in macrophage cell cultures following Fc receptor-mediated adsorption. Virology 207:503–509 [CrossRef]
    [Google Scholar]
  7. Berinstein A., Roivainen M., Hovi T., Mason P. W., Baxt B. 1995; Antibodies to the vitronectin receptor (integrin α V β 3) inhibit binding and infection of foot-and-mouth disease virus to cultured cells. J Virol 69:2664–2666
    [Google Scholar]
  8. Burness A. T. H. 1981; Glycophorin and sialylated components as receptors for viruses. In Virus Receptors Part 2. Animal Viruses pp  65–84 Edited by Lonberg-Holm K., Philipson L. London: Chapman & Hall;
    [Google Scholar]
  9. Evans D. J., Almond J. W. 1998; Cell receptors for picornaviruses as determinants of cell tropism and pathogenesis. Trends Microbiol 6:198–202 [CrossRef]
    [Google Scholar]
  10. Greve J. M., Davis G., Meyer A. M., Forte C. P., Yost S. C., Marlor C. W., Kamarck M. E., McClelland A. 1989; The major human rhinovirus receptor is ICAM-1. Cell 56:839–847 [CrossRef]
    [Google Scholar]
  11. Guerrero C. A., Zarate S., Corkidi G., Lopez S., Arias C. F. 2000; Biochemical characterization of rotavirus receptors in MA104 cells. J Virol 74:9362–9371 [CrossRef]
    [Google Scholar]
  12. Hartley C. A., Ficorilli N., Dynon K., Drummer H. E., Huang J., Studdert M. J. 2001; Equine rhinitis A virus: structural proteins and immune response. J Gen Virol 82:1725–1728
    [Google Scholar]
  13. Inghirami G., Nakamura M., Balow J. E., Notkins A. L., Casali P. 1988; Model for studying virus attachment: identification and quantitation of Epstein–Barr virus-binding cells by using biotinylated virus in flow cytometry. J Virol 62:2453–2463
    [Google Scholar]
  14. Jackson T., Ellard F. M., Ghazaleh R. A., Brookes S. M., Blakemore W. E., Corteyn A. H., Stuart D. I., Newman J. W., King A. M. 1996; Efficient infection of cells in culture by type O foot-and-mouth disease virus requires binding to cell surface heparan sulfate. J Virol 70:5282–5287
    [Google Scholar]
  15. Jackson T., Blakemore W., Newman J. W. I., Knowles N. J., Mould A. P., Humphries M. J., King A. M. Q. 2000; Foot-and-mouth disease virus is a ligand for the high-affinity binding conformation of integrin α 5 β 1: influence of the leucine residue within the RGDL motif on selectivity of integrin binding. J Gen Virol 81:1383–1391
    [Google Scholar]
  16. Jackson T., Mould A. P., Sheppard D., King A. M. Q. 2002; Integrin α v β 1 is a receptor for foot-and-mouth disease virus. J Virol 76:935–941 [CrossRef]
    [Google Scholar]
  17. Jnaoui K., Minet M., Michiels T. 2002; Mutations that affect the tropism of DA and GDVII strains of Theiler's virus in vitro influence sialic acid binding and pathogenicity. J Virol 76:8138–8147 [CrossRef]
    [Google Scholar]
  18. Li F., Browning G. F., Studdert M. J., Crabb B. S. 1996; Equine rhinovirus 1 is more closely related to foot-and-mouth disease virus than to other picornaviruses. Proc Natl Acad Sci U S A 93:990–995 [CrossRef]
    [Google Scholar]
  19. Li F., Drummer H. E., Ficorilli N., Studdert M. J., Crabb B. S. 1997; Identification of noncytopathic equine rhinovirus 1 as a cause of acute febrile respiratory disease in horses. J Clin Microbiol 35:937–943
    [Google Scholar]
  20. Lonberg-Holm K., Philipson L. 1974; Irreversible inhibition of receptors. In Early Interaction between Animal Viruses and Cells . Monographs in Virology, 9th edn. pp  34–37 Edited by Melnick J. L. Houston, TX: S. Karger;
    [Google Scholar]
  21. Luo M., Rossmann M. G., Palmenberg A. C. 1997; The structure of Theiler's virus complexed with its receptor. Exp Prog Rep 7:57–60
    [Google Scholar]
  22. Marlovits T. C., Abrahamsberg C., Blass D. 1998; Very-low-density lipoprotein receptor fragment shed from HeLa cells inhibits human rhinovirus infection. J Virol 72:10246–10250
    [Google Scholar]
  23. Martinez-Barragan J. J., Angel R. M. 2001; Identification of a putative coreceptor on Vero cells that participates in dengue 4 virus infection. J Virol 75:7818–7827 [CrossRef]
    [Google Scholar]
  24. McCollum W. H., Timoney P. J. 1992; Studies on the seroprevalence and frequency of equine rhinovirus-I and -II infection in normal horse urine. In Equine Infectious Diseases pp  83–87 Cambridge: R & W Publications;
    [Google Scholar]
  25. Newcombe N. G., Andersson P., Johansson E. S., Au G. G., Lindberg A. M., Barry R. D., Shafren D. R. 2003; Cellular–receptor interactions of C-cluster human group A coxsackieviruses. J Gen Virol 84:3041–3050 [CrossRef]
    [Google Scholar]
  26. Ogawa M., Yamaguchi T., Setiyono A., Ho T., Matsuda H., Furusawa S., Fukushi H., Hirai K. 1998; Some characteristics of a cellular receptor for virulent infectious bursal disease virus by using flow cytometry. Arch Virol 143:2327–2341 [CrossRef]
    [Google Scholar]
  27. Plummer G. 1962; An equine respiratory virus with enterovirus properties. Nature 195:519–520 [CrossRef]
    [Google Scholar]
  28. Plummer G. 1963; An equine respiratory enterovirus: some biological and physical properties. Arch Gesamte Virusforsch 12:694–700 [CrossRef]
    [Google Scholar]
  29. Reddi H. V., Lipton H. L. 2002; Heparan sulfate mediates infection of high-neurovirulence Theiler's viruses. J Virol 76:8400–8407 [CrossRef]
    [Google Scholar]
  30. Rieder E., Berinstein A., Baxt B., Kang A., Mason P. W. 1996; Propagation of an attenuated virus by design: engineering a novel receptor for a noninfectious foot-and-mouth disease virus. Proc Natl Acad Sci U S A 93:10428–10433 [CrossRef]
    [Google Scholar]
  31. Roivainen M., Piirainen L., Hovi T., Virtanen I., Riikonen T., Heino J., Hyypia T. 1994; Entry of coxsackievirus A9 into host cells – specific interactions with α v β 3 integrin, the vitronectin receptor. Virology 203:357–365 [CrossRef]
    [Google Scholar]
  32. Rossmann M. G., He Y., Kuhn R. J. 2002; Picornavirus–receptor interactions. Trends Microbiol 10:324–331 [CrossRef]
    [Google Scholar]
  33. Staunton D. E., Merluzzi V. J., Rothlein R., Barton R., Marlin S. D., Springer T. A. 1989; A cell adhesion molecule, ICAM-1, is the major surface receptor for rhinoviruses. Cell 56:849–853 [CrossRef]
    [Google Scholar]
  34. Studdert M. J., Gleeson L. J. 1978; Isolation and characterisation of an equine rhinovirus. Zentralbl Veterinarmed B 25:225–237
    [Google Scholar]
  35. Tomassini J. E., Graham D., DeWitt C. M., Lineberger D. W., Rodkey J. A., Colonno R. J. 1989; cDNA cloning reveals that the major group rhinovirus receptor on HeLa cells is intercellular adhesion molecule 1. Proc Natl Acad Sci U S A 86:4907–4911 [CrossRef]
    [Google Scholar]
  36. Varki A., Cummings R., Esko J., Freeze H., Hart G., Marth J. 1999 Essentials of Glycobiology Edited by Varki A., Cummings R., Esko J., Freeze H., Hart G., Marth J. La Jolla, CA: CSHL Press;
    [Google Scholar]
  37. Warner S., Hartley C. A., Stevenson R. A., Ficorilli N., Varrasso A., Studdert M. J., Crabb B. S. 2001; Evidence that equine rhinitis A virus is a target of neutralising antibodies and participates directly in receptor binding. J Virol 75:9274–9281 [CrossRef]
    [Google Scholar]
  38. Wasserman K., Subklewe M., Pothoff G., Banik N., Schell-Frederick E. 1994; Expression of surface markers on alveolar macrophages from symptomatic patients with HIV infection as detected by flow cytometry. Chest 105:1324–1334 [CrossRef]
    [Google Scholar]
  39. Woodward M. P., Young W. W., Bloodgood R. A. 1985; Detection of monoclonal antibodies specific for carbohydrate epitopes using periodate oxidation. J Immunol Methods 78:143–153 [CrossRef]
    [Google Scholar]
  40. Xiao C., Bator C. M., Bowman V. D. 8 other authors 2001; Interaction of coxsackievirus A21 with its cellular receptor, ICAM-1. J Virol 75:2444–2451 [CrossRef]
    [Google Scholar]
  41. Zhou L., Lin X., Green T. J., Lipton H. L., Luo M. 1997; Role of sialyloligosaccharide binding in Theiler's virus persistence. J Virol 71:9701–9712
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.80207-0
Loading
/content/journal/jgv/10.1099/vir.0.80207-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error