1887

Abstract

Natural recombinant (PPV) isolates were detected in Albania, Bulgaria, Czech Republic, Germany, Hungary and Slovakia. Despite different geographical origins and dates of isolation, all the recombinant isolates were closely related at the molecular level and shared the same recombination breakpoint as well as a typical signature in their N-terminal coat protein sequence, suggesting a common origin. Biological assays with four recombinant isolates demonstrated their capacity to be aphid-transmitted to various hosts. One of these isolates had a threonine-to-isoleucine mutation in the conserved PTK motif of its and showed a drastically decreased, although not abolished, aphid transmissibility. The complete genome sequence of one of the recombinant isolates, BOR-3, was determined, as well as some partial sequences in the and genes for additional natural recombinant isolates. Analysis of the phylogenetic relationships between the recombinant isolates and other sequenced PPV isolates confirmed that the recombinant isolates form a phylogenetically homogeneous lineage. In addition, this analysis revealed an ancient recombination event between the PPV-D and M subgroups, with a recombination breakpoint located in the gene. Taken together, these results indicate that recombinant isolates represent an evolutionarily successful, homogeneous group of isolates with a common history and unique founding recombination event. The name PPV-Rec is proposed for this coherent ensemble of isolates.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.80206-0
2004-09-01
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/jgv/85/9/vir852671.html?itemId=/content/journal/jgv/10.1099/vir.0.80206-0&mimeType=html&fmt=ahah

References

  1. Aaziz R., Tepfer M. 1999; Recombination in RNA viruses and in virus-resistant transgenic plants. J Gen Virol 80:1339–1346
    [Google Scholar]
  2. Atreya P. L., Lopez-Moya J. J., Chu M., Atreya C. D., Pirone T. P. 1995; Mutational analysis of the coat protein N-terminal amino acids involved in potyvirus transmission by aphids. J Gen Virol 76:265–270 [CrossRef]
    [Google Scholar]
  3. Blanc S., Lopez-Moya J. J., Wang R., Garcia-Lampasona S., Thornbury D. W., Pirone T. P. 1997; A specific interaction between coat protein and helper component correlates with aphid transmission of a potyvirus. Virology 231:141–147 [CrossRef]
    [Google Scholar]
  4. Bousalem M., Candresse T., Quiot-Douine L., Quiot J. B. 1994; Comparison of three methods for assessing plum pox virus variability: further evidence for the existence of two major groups of isolates. J Phytopathol 142:163–172 [CrossRef]
    [Google Scholar]
  5. Bousalem M., Douzery E. J., Fargette D. 2000; High genetic diversity, distant phylogenetic relationships and intraspecies recombination events among natural populations of Yam mosaic virus: a contribution to understanding potyvirus evolution. J Gen Virol 81:243–255
    [Google Scholar]
  6. Bousalem M., Dallot S., Fuji S., Natsuaki K. T. 2003; Origin, world-wide dispersion, bio-geographical diversification, radiation and recombination: an evolutionary history of Yam mild mosaic virus (YMMV). Infect Genet Evol 3:189–206 [CrossRef]
    [Google Scholar]
  7. Candresse T., Cambra M., Dallot S. 9 other authors 1998; Comparison of monoclonal antibodies and polymerase chain reaction assays for the typing of isolates belonging to the M and D serotypes of plum pox potyvirus. Phytopathology 88:198–204 [CrossRef]
    [Google Scholar]
  8. Cervera M. T., Riechmann J. L., Martin M. T., Garcia J. A. 1993; 3′ terminal sequence of the plum pox virus PS and o6 isolates: evidence for RNA recombination within the potyvirus group. J Gen Virol 74:329–334 [CrossRef]
    [Google Scholar]
  9. Desbiez C., Lecoq H. 2004; The nucleotide sequence of Watermelon mosaic virus (WMV, Potyvirus) reveals interspecific recombination between two related potyviruses in the 5′ part of the genome. Arch Virol 149 (in press
    [Google Scholar]
  10. Devereux J., Haeberli P., Smithies O. 1984; A comprehensive set of sequence analysis program for the VAX. Nucleic Acids Res 12:387–395 [CrossRef]
    [Google Scholar]
  11. Dietrich C., Maiss E. 2003; Fluorescent labelling reveals spatial separation of potyvirus populations in mixed infected Nicotiana benthamiana plants. J Gen Virol 84:2871–2876 [CrossRef]
    [Google Scholar]
  12. Garcia-Arenal F., Fraile A., Malpica J. M. 2001; Variability and genetic structure of plant virus populations. Annu Rev Phytopathol 39:157–186 [CrossRef]
    [Google Scholar]
  13. Garcia-Arenal F., Fraile A., Malpica J. M. 2003; Variation and evolution of plant virus populations. Int Microbiol 6:225–232 [CrossRef]
    [Google Scholar]
  14. Glais L., Tribodet M., Kerlan C. 2002; Genomic variability in Potato potyvirus Y (PVY): evidence that PVYNW and PVYNTN variants are single to multiple recombinants between PVYO and PVYN isolates. Arch Virol 147:363–378 [CrossRef]
    [Google Scholar]
  15. Glasa M., Kúdela O., Marie-Jeanne V., Quiot J. B. 2001; Evidence of a naturally occurring recombinant isolate of Plum pox virus from Slovakia. Plant Dis 85:920
    [Google Scholar]
  16. Glasa M., Marie-Jeanne V., Moury B., Kúdela O., Quiot J. B. 2002a; Molecular variability of the P3-6K1 genomic region among geographically and biologically distinct isolates of Plum pox virus. Arch Virol 147:563–575 [CrossRef]
    [Google Scholar]
  17. Glasa M., Marie-Jeanne V., Labonne G., Šubr Z., Kúdela O., Quiot J. B. 2002b; Natural population of recombinant Plum pox virus is stable and competitive under field conditions. Eur J Plant Pathol 108:843–853 [CrossRef]
    [Google Scholar]
  18. James D., Varga A., Thompson D., Hayes S. 2003; Detection of a new and unusual isolate of plum pox potyvirus in plum ( Prunus domestica ). Plant Dis 87:1119–1124 [CrossRef]
    [Google Scholar]
  19. Klein P. G., Klein R. R., Rodriguez-Cerezo E., Hunt A. G., Shaw J. G. 1994; Mutational analysis of the tobacco vein mottling virus genome. Virology 204:759–769 [CrossRef]
    [Google Scholar]
  20. Krause-Sakate R., Fakhfakh H., Peypelut M., Pavan M. A., Zerbini F. M., Marrakchi M., Candresse T., Le Gall O. 2004; A naturally occurring recombinant isolate of Lettuce mosaic virus. Arch Virol 149:191–197
    [Google Scholar]
  21. Kumar S., Tamura K., Ingrid B. J., Nei M. 2001; MEGA2: molecular evolutionary genetics analysis software. Bioinformatics 17:1244–1245 [CrossRef]
    [Google Scholar]
  22. Labonne G., Yvon M., Quiot J. B., Avinent L., Llacer G. 1995; Aphids as potential vectors of plum pox virus: comparison of methods of testing and epidemiological consequences. Acta Hortic 386:207–216
    [Google Scholar]
  23. Lai M. M. C. 1992; RNA recombination in animal and plant viruses. Microbiol Rev 56:61–79
    [Google Scholar]
  24. Lai M. M. C. 1995; Recombination and its evolutionary effect on viruses with RNA genomes. In Molecular Basis of Virus Evolution pp  119–132 Edited by Gibbs A. J., Calisher C. H., Garcia-Arenal F. Cambridge: Cambridge University Press;
    [Google Scholar]
  25. Moreno I. M., Malpica J. M., Diaz-Pendon J. A., Moriones E., Fraile A., Garcia-Arenal F. 2004; Variability and genetic structure of the population of watermelon mosaic virus infecting melon in Spain. Virology 318:451–460 [CrossRef]
    [Google Scholar]
  26. Myrta A., Di Terlizzi B., Boscia D., Caglayan K., Gavriel I., Ghanem G., Varveri C., Savino V. 1998; Detection and serotyping of Mediterranean plum pox virus isolates by means of strain-specific monoclonal antibodies. Acta Virol 42:251–253
    [Google Scholar]
  27. Nagy P. D., Simon A. E. 1997; New insights into the mechanisms of RNA recombination. Virology 235:1–9 [CrossRef]
    [Google Scholar]
  28. Nemchinov L., Crescenzi A., Hadidi A., Piazzolla P., Verderevskaya T. 1998; Present status of the new cherry subgroup of Plum pox virus (PPV-C. In Plant Virus Disease Control pp  629–638 Edited by Hadidi A., Khetarpal R. K., Koganezawa H. St Paul, MN: American Phytopathological Society;
    [Google Scholar]
  29. Palkovics L., Burgyan J., Balazs E. 1993; Comparative sequence analysis of four complete primary structure of plum pox virus strains. Virus Genes 7:339–347 [CrossRef]
    [Google Scholar]
  30. Peng Y., Kadoury D., Gal-On A., Huet H., Wang Y., Raccah B. 1998; Mutations in the HC-Pro gene of zucchini yellow mosaic potyvirus: effects on aphid transmission and binding to purified virions. J Gen Virol 79:897–904
    [Google Scholar]
  31. Rankovic M., Ogasanovic D., Paunovic S. 1994; Breeding of plum cultivars resistant to sharka (plum pox) disease. Acta Hortic 359:69–73
    [Google Scholar]
  32. Revers F., Le Gall O., Candresse T., Le Romancer M., Dunez J. 1996; Frequent occurrence of recombinant potyvirus isolates. J Gen Virol 77:1953–1965 [CrossRef]
    [Google Scholar]
  33. Riechmann J. L., Lain S., Garcia J. A. 1992; Highlights and prospects of potyvirus molecular biology. J Gen Virol 73:1–16 [CrossRef]
    [Google Scholar]
  34. Saenz P., Quoit L., Quiot J. B., Candresse T., Garcia J. A. 2001; Pathogenicity determinants in the complex virus population of a Plum pox virus isolate. Mol Plant Microb Interact 14:278–287 [CrossRef]
    [Google Scholar]
  35. Sawyer S. 1989; Statistical tests for detecting gene conversion. Mol Biol Evol 6:526–538
    [Google Scholar]
  36. Simon A. E., Bujarski J. J. 1994; RNA–RNA recombination and evolution in virus-infected plants. Annu Rev Phytopathol 32:337–362 [CrossRef]
    [Google Scholar]
  37. Simon-Buela L., Guo H. S., Garcia J. A. 1997; Long sequences in the 5′ non-coding region of plum pox virus are not necessary for viral infectivity but contribute to competitiveness and pathogenesis. Virology 233:157–162 [CrossRef]
    [Google Scholar]
  38. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef]
    [Google Scholar]
  39. Tomimura K., Gibbs A. J., Jenner C. E., Walsh J. A., Ohshima K. 2003; The phylogeny of Turnip mosaic virus; comparisons of 38 genomic sequences reveal a Eurasian origin and a recent ‘emergence’ in east Asia. Mol Ecol 12:2099–2111 [CrossRef]
    [Google Scholar]
  40. Urcuqui-Inchima S., Haenni A. L., Bernardi F. 2001; Potyvirus proteins: a wealth of functions. Virus Res 74:157–175 [CrossRef]
    [Google Scholar]
  41. Ward C. W., Weiller G. F., Shukla D. D., Gibbs A. 1995; Molecular systematics of the Potyviridae, the largest plant virus family. In Molecular Basis of Virus Evolution pp  477–500 Edited by Gibbs A. J., Calisher C. H., Garcia-Arenal F. Cambridge: Cambridge University Press;
    [Google Scholar]
  42. Weiller G. F. 1998; Phylogenetic profiles: a graphical method for detecting genetic recombinations in homologous sequences. Mol Biol Evol 15:326–335 [CrossRef]
    [Google Scholar]
  43. Wetzel T., Candresse T., Ravelonandro M., Delbos R. P., Mazyad H., Aboul-Ata A. E., Dunez J. 1991; Nucleotide sequence of the 3′-terminal region of the RNA of the El Amar strain of plum pox potyvirus. J Gen Virol 72:1741–1746 [CrossRef]
    [Google Scholar]
  44. Wetzel T., Candresse T., Macquaire G., Ravelonandro M., Dunez J. 1992; A highly sensitive immunocapture polymerase chain reaction method for plum pox potyvirus detection. J Virol Methods 39:27–37 [CrossRef]
    [Google Scholar]
  45. Worobey M., Holmes E. C. 1999; Evolutionary aspects of recombination in RNA viruses. J Gen Virol 80:2535–2543
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.80206-0
Loading
/content/journal/jgv/10.1099/vir.0.80206-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error