1887

Abstract

The route of pathogen entry can have a major effect on the ability of a virus to induce a prolific infection, but it can also affect the ability of the host organism to induce an immune response to fight the infection. Transmission of arboviruses that cause serious diseases in humans often begin by an insect ingesting a virus, which then disseminates through the internal organs and tissues and ultimately culminates in virus transmission to a human host. Understanding the effect of a natural route of infection on the host–pathogen interaction may facilitate development of approaches to prevent viral dissemination. has been a useful model organism for understanding host–virus interactions; however, most studies have achieved infection by artificially injecting the virus into the host. Here, we developed a single-stranded quantitative PCR able to detect only actively replicating Drosophila C virus (DCV) to study the effect of viral feeding at the early stages of larval development. Exposure of newly hatched larvae to DCV led to 20 % of larvae becoming infected within 12 h post-contamination, and caused a 14 % egg-to-adult mortality. This is the first time, to the best of our knowledge, that it has been shown experimentally that DCV is able to establish a prolific infection following larval feeding. Using these newly developed tools, the results suggest that larvae that become infected die before adult eclosion.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.000068
2015-06-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/jgv/96/6/1490.html?itemId=/content/journal/jgv/10.1099/vir.0.000068&mimeType=html&fmt=ahah

References

  1. Arnold P. A., Johnson K. N., White C. R. 2013; Physiological and metabolic consequences of viral infection in Drosophila melanogaster . J Exp Biol 216:3350–3357 [View Article][PubMed]
    [Google Scholar]
  2. Bonning B. C. 2009; The Dicistroviridae: an emerging family of invertebrate viruses. Virol Sin 24:415–427 [View Article]
    [Google Scholar]
  3. Bonning B. C., Miller W. A. 2010; Dicistroviruses. Annu Rev Entomol 55:129–150 [View Article][PubMed]
    [Google Scholar]
  4. Buck K. W. 1996; Comparison of the replication of positive-stranded RNA viruses of plants and animals. Adv Virus Res 47:159–251 [View Article][PubMed]
    [Google Scholar]
  5. Charroux B., Royet J. 2010; Drosophila immune response: From systemic antimicrobial peptide production in fat body cells to local defense in the intestinal tract. Fly (Austin) 4:40–47 [View Article][PubMed]
    [Google Scholar]
  6. Cherry S., Perrimon N. 2004; Entry is a rate-limiting step for viral infection in a Drosophila melanogaster model of pathogenesis. Nat Immunol 5:81–87 [View Article][PubMed]
    [Google Scholar]
  7. Comendador M. A., Plus N., Louis C., Lopez-Ferber M., Kuhl A., Kuhl G. 1986; Endemic microorganisms of a Drosophila simulans strain and their relationships with the non-Mendelian transmission of a character. Genet Sel Evol 18:131–144 [View Article][PubMed]
    [Google Scholar]
  8. Daffre S., Kylsten P., Samakovlis C., Hultmark D. 1994; The lysozyme locus in Drosophila melanogaster: an expanded gene family adapted for expression in the digestive tract. Mol Gen Genet 242:152–162 [View Article][PubMed]
    [Google Scholar]
  9. Davis M. M., Engström Y. 2012; Immune response in the barrier epithelia: lessons from the fruit fly Drosophila melanogaster . J Innate Immun 4:273–283 [View Article][PubMed]
    [Google Scholar]
  10. Dostert C., Jouanguy E., Irving P., Troxler L., Galiana-Arnoux D., Hetru C., Hoffmann J. A., Imler J. L. 2005; The Jak-STAT signaling pathway is required but not sufficient for the antiviral response of Drosophila. Nat Immunol 6:946–953 [View Article][PubMed]
    [Google Scholar]
  11. Ferreira A. G., Naylor H., Esteves S. S., Pais I. S., Martins N. E., Teixeira L. 2014; The Toll-dorsal pathway is required for resistance to viral oral infection in Drosophila. . PLoS Pathog 10:e1004507 [View Article][PubMed]
    [Google Scholar]
  12. Filipe D., Thomas-Orillard M. 1998; Experimental study of a Drosophila melanogaster laboratory population infected by food contamination. Endocyt Cell Res 12:163–176
    [Google Scholar]
  13. Gomariz-Zilber E., Thomas-Orillard M. 1993; Drosophila C virus and Drosophila hosts: a good association in various environments. J Evol Biol 6:677–689 [View Article]
    [Google Scholar]
  14. Gu C. J., Zheng C. Y., Shi L. L., Zhang Q., Li Y., Lu B., Xiong Y., Qu S. P., Shao J. J., Chang H. 2007; Plus- and minus-stranded foot-and-mouth disease virus RNA quantified simultaneously using a novel real-time RT-PCR. Virus Genes 34:289–298 [View Article][PubMed]
    [Google Scholar]
  15. Hedges L. M., Johnson K. N. 2008; Induction of host defence responses by Drosophila C virus. J Gen Virol 89:1497–1501 [View Article][PubMed]
    [Google Scholar]
  16. Hedges L. M., Brownlie J. C., O’Neill S. L., Johnson K. N. 2008; Wolbachia and virus protection in insects. Science 322:702 [View Article][PubMed]
    [Google Scholar]
  17. Huszar T., Imler J. L. 2008; Drosophila viruses and the study of antiviral host-defense. Adv Virus Res 72:227–265 [View Article][PubMed]
    [Google Scholar]
  18. Johnson K. N., Christian P. D. 1998; The novel genome organization of the insect picorna-like virus Drosophila C virus suggests this virus belongs to a previously undescribed virus family. J Gen Virol 79:191–203[PubMed] [CrossRef]
    [Google Scholar]
  19. Johnson K. N., Christian P. D. 1999; Molecular characterization of Drosophila C virus isolates. J Invertebr Pathol 73:248–254 [View Article][PubMed]
    [Google Scholar]
  20. Jousset F. X., Plus N. 1975; [Study of the vertical transmission and horizontal transmission of Drosophila melanogaster and Drosophila immigrans picornavirus]. Ann Microbiol (Paris) 126:231–249 (in French) [PubMed]
    [Google Scholar]
  21. Jousset F. X., Plus N., Croizier G., Thomas M. 1972; [Existence in Drosophila of 2 groups of picornavirus with different biological and serological properties]. C R Acad Sci Hebd Seances Acad Sci D 275:3043–3046 (in French) [PubMed]
    [Google Scholar]
  22. Kawakami E., Watanabe T., Fujii K., Goto H., Watanabe S., Noda T., Kawaoka Y. 2011; Strand-specific real-time RT-PCR for distinguishing influenza vRNA, cRNA, and mRNA. J Virol Methods 173:1–6 [View Article][PubMed]
    [Google Scholar]
  23. Kemp C., Mueller S., Goto A., Barbier V., Paro S., Bonnay F., Dostert C., Troxler L., Hetru C. et al. 2013; Broad RNA interference-mediated antiviral immunity and virus-specific inducible responses in Drosophila. . J Immunol 190:650–658 [View Article][PubMed]
    [Google Scholar]
  24. Komurian-Pradel F., Perret M., Deiman B., Sodoyer M., Lotteau V., Paranhos-Baccalà G., André P. 2004; Strand specific quantitative real-time PCR to study replication of hepatitis C virus genome. J Virol Methods 116:103–106 [View Article][PubMed]
    [Google Scholar]
  25. Lamiable O., Imler J. L. 2014; Induced antiviral innate immunity in Drosophila . Curr Opin Microbiol 20:62–68 [View Article][PubMed]
    [Google Scholar]
  26. Lautié-Harivel N. 1992; Drosophila C virus cycle during the development of two Drosophila melanogaster strains (Charolles and Champetières) after larval contamination by food. Biol Cell 76:151–157 [View Article][PubMed]
    [Google Scholar]
  27. Lautié-Harivel N., Thomas-Orillard M. 1990; Location of Drosophila C virus target organs in Drosophila host population by an immunofluorescence technique. Biol Cell 69:35–39 [View Article][PubMed]
    [Google Scholar]
  28. Lemaitre B., Hoffmann J. 2007; The host defense of Drosophila melanogaster . Annu Rev Immunol 25:697–743 [View Article][PubMed]
    [Google Scholar]
  29. Martins N. E., Faria V. G., Teixeira L., Magalhães S., Sucena E. 2013; Host adaptation is contingent upon the infection route taken by pathogens. PLoS Pathog 9:e1003601 [View Article][PubMed]
    [Google Scholar]
  30. Osborne S. E., Leong Y. S., O’Neill S. L., Johnson K. N. 2009; Variation in antiviral protection mediated by different Wolbachia strains in Drosophila simulans . PLoS Pathog 5:e1000656 [View Article][PubMed]
    [Google Scholar]
  31. Plaskon N. E., Adelman Z. N., Myles K. M. 2009; Accurate strand-specific quantification of viral RNA. PLoS ONE 4:e7468 [View Article][PubMed]
    [Google Scholar]
  32. Plus N., Croizier G., Jousset F. X., David J. 1975; Picornaviruses of laboratory and wild Drosophila melanogaster: geographical distribution and serotypic composition. Ann Microbiol (Paris) 126:107–117[PubMed]
    [Google Scholar]
  33. Purcell M. K., Hart S. A., Kurath G., Winton J. R. 2006; Strand-specific, real-time RT-PCR assays for quantification of genomic and positive-sense RNAs of the fish rhabdovirus, Infectious hematopoietic necrosis virus. J Virol Methods 132:18–24 [View Article][PubMed]
    [Google Scholar]
  34. Rainey S. M., Shah P., Kohl A., Dietrich I. 2014; Understanding the Wolbachia-mediated inhibition of arboviruses in mosquitoes: progress and challenges. J Gen Virol 95:517–530 [View Article][PubMed]
    [Google Scholar]
  35. Ramirez J. L., Dimopoulos G. 2010; The Toll immune signaling pathway control conserved anti-dengue defenses across diverse Ae. aegypti strains and against multiple dengue virus serotypes. Dev Comp Immunol 34:625–629 [View Article][PubMed]
    [Google Scholar]
  36. Schneider I. 1972; Cell lines derived from late embryonic stages of Drosophila melanogaster . J Embryol Exp Morphol 27:353–365[PubMed]
    [Google Scholar]
  37. Souza-Neto J. A., Sim S., Dimopoulos G. 2009; An evolutionary conserved function of the JAK-STAT pathway in anti-dengue defense. Proc Natl Acad Sci U S A 106:17841–17846 [View Article][PubMed]
    [Google Scholar]
  38. Steinert S., Levashina E. A. 2011; Intracellular immune responses of dipteran insects. Immunol Rev 240:129–140 [View Article][PubMed]
    [Google Scholar]
  39. Teixeira L. 2012; Whole-genome expression profile analysis of Drosophila melanogaster immune responses. Brief Funct Genomics 11:375–386 [View Article][PubMed]
    [Google Scholar]
  40. Tuiskunen A., Leparc-Goffart I., Boubis L., Monteil V., Klingström J., Tolou H. J., Lundkvist A., Plumet S. 2010; Self-priming of reverse transcriptase impairs strand-specific detection of dengue virus RNA. J Gen Virol 91:1019–1027 [View Article][PubMed]
    [Google Scholar]
  41. Weaver S. C., Barrett A. D. T. 2004; Transmission cycles, host range, evolution and emergence of arboviral disease. Nat Rev Microbiol 2:789–801 [View Article][PubMed]
    [Google Scholar]
  42. Westaway E. G. 1987; Flavivirus replication strategy. Adv Virus Res 33:45–90 [View Article][PubMed]
    [Google Scholar]
  43. Xi Z. Y., Ramirez J. L., Dimopoulos G. 2008; The Aedes aegypti toll pathway controls dengue virus infection. PLoS Pathog 4:e1000098 [View Article][PubMed]
    [Google Scholar]
  44. Xu J., Cherry S. 2014; Viruses and antiviral immunity in Drosophila. . Dev Comp Immunol 42:67–84 [View Article][PubMed]
    [Google Scholar]
  45. Xu J., Hopkins K., Sabin L., Yasunaga A., Subramanian H., Lamborn I., Gordesky-Gold B., Cherry S. 2013; ERK signaling couples nutrient status to antiviral defense in the insect gut. Proc Natl Acad Sci U S A 110:15025–15030 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.000068
Loading
/content/journal/jgv/10.1099/vir.0.000068
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error