1887

Abstract

is a bacterium that resides in the normal human gastro-intestinal tract; however, it is also the most commonly isolated Gram-negative obligate anaerobe from human clinical infections, such as intra-abdominal abscesses, and the most common cause of anaerobic bacteraemia. Abscess formation is important in bacterial containment, limiting dissemination of infection and bacteraemia. In this study, we investigated binding and degradation of human fibrinogen, the major structural component involved in fibrin abscess formation. We have shown that NCTC9343 binds human fibrinogen. A putative fibrinogen-binding protein, designated BF-FBP, identified in the genome sequence of NCTC9343, was cloned and expressed in . The purified recombinant BF-FBP bound primarily to the human fibrinogen B-chain. In addition, we have identified fibrinogenolytic activity in exponential phase culture supernatants, associated with fibrinogenolytic metalloproteases in NCTC9343 and 638R, and cysteine protease activity in YCH46. All nine clinical isolates of examined degraded human fibrinogen; with eight isolates, initial A-chain degradation was observed, with varying B-chain and -chain degradation. With one blood culture isolate, B-chain and -chain degradation occurred first, followed by subsequent A-chain degradation. Our data raise the possibility that the fibrinogen-binding protein of , along with a variety of fibrinogenolytic proteases, may be an important virulence factor that facilitates dissemination of infection via reduction or inhibition of abscess formation.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.038588-0
2010-08-01
2024-03-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/8/2516.html?itemId=/content/journal/micro/10.1099/mic.0.038588-0&mimeType=html&fmt=ahah

References

  1. Aitken A., Learmonth M. 2002; Protein identification by in-gel digestion and mass spectrometric analysis. Mol Biotechnol 20:95–97
    [Google Scholar]
  2. Barkocy-Gallagher G. A., Foley J. W., Lantz M. S. 1999; Activities of the Porphyromonas gingivalis PrtP proteinase determined by construction of prtP-deficient mutants and expression of the gene in Bacteroides species. J Bacteriol 181:246–255
    [Google Scholar]
  3. Border M., Firehammer B. D., Shoop D. S., Myers L. L. 1985; Isolation of Bacteroides fragilis from the feces of diarrheic calves and lambs. J Clin Microbiol 21:472–473
    [Google Scholar]
  4. Cerdeno-Tarraga A. M., Patrick S., Crossman L. C., Blakely G., Abratt V., Lennard N., Poxton I., Duerden B., Harris B. other authors 2005; Extensive DNA inversions in the B. fragilis genome control variable gene expression. Science 307:1463–1465
    [Google Scholar]
  5. Chen Y., Kinouchi T., Kataoka K., Akimoto S., Ohnishi Y. 1995; Purification and characterization of a fibrinogen-degrading protease in Bacteroides fragilis strain YCH46. Microbiol Immunol 39:967–977
    [Google Scholar]
  6. Claros M. C., Claros Z. C., Hecht D. W., Citron D. M., Goldstein E. J., Silva J. Jr, Tang-Feldman Y., Rodloff A. C. 2006; Characterization of the Bacteroides fragilis pathogenicity island in human blood culture isolates. Anaerobe 12:17–22
    [Google Scholar]
  7. Domingues R. M., Avelar K. E., Souza W. G., Moraes S. R., Antunes E. N., Oliveira I. A., Ferreira M. C. 1997; Whole-cell and periplasmic protein banding patterns of environmental and human Bacteroides fragilis strains. Zentralbl Bakteriol 286:305–315
    [Google Scholar]
  8. Dominiecki M. E., Weiss J. 1999; Antibacterial action of extracellular mammalian group IIA phospholipase A2 against grossly clumped Staphylococcus aureus. Infect Immun 67:2299–2305
    [Google Scholar]
  9. Doolittle R. F. 1984; Fibrinogen and fibrin. Annu Rev Biochem 53:195–229
    [Google Scholar]
  10. Egea L., Aguilera L., Gimenez R., Sorolla M. A., Aguilar J., Badia J., Baldoma L. 2007; Role of secreted glyceraldehyde-3-phosphate dehydrogenase in the infection mechanism of enterohemorrhagic and enteropathogenic Escherichia coli: interaction of the extracellular enzyme with human plasminogen and fibrinogen. Int J Biochem Cell Biol 39:1190–1203
    [Google Scholar]
  11. Eiring P., Manncke B., Gerbracht K., Werner H. 1995; Bacteroides fragilis adheres to laminin significantly stronger than Bacteroides thetaiotaomicron and other species of the genus. Zentralbl Bakteriol 282:279–286
    [Google Scholar]
  12. Ferreira Ede O., de Carvalho J. B., Peixoto R. J., Lobo L. A., Zingalli R. B., Smith C. J., Rocha E. R., Domingues R. M. 2009; The interaction of Bacteroides fragilis with components of the human fibrinolytic system. FEMS Immunol Med Microbiol 56:48–55
    [Google Scholar]
  13. Hanley S. A., Aduse-Opoku J., Curtis M. A. 1999; A 55-kilodalton immunodominant antigen of Porphyromonas gingivalis W50 has arisen via horizontal gene transfer. Infect Immun 67:1157–1171
    [Google Scholar]
  14. Henschen A., Lottspeich F., Kehl M., Southan C. 1983; Covalent structure of fibrinogen. Ann N Y Acad Sci 408:28–43
    [Google Scholar]
  15. Honma K., Kuramitsu H. K., Genco R. J., Sharma A. 2001; Development of a gene inactivation system for Bacteroides forsythus: construction and characterization of a BspA mutant. Infect Immun 69:4686–4690
    [Google Scholar]
  16. Inagaki S., Onishi S., Kuramitsu H. K., Sharma A. 2006; Porphyromonas gingivalis vesicles enhance attachment, and the leucine-rich repeat BspA protein is required for invasion of epithelial cells by “ Tanerella forsythia”. Infect Immun 74:5023–5028
    [Google Scholar]
  17. Kapral F. A. 1966; Clumping of Staphylococcus aureus in the peritoneal cavity of mice. J Bacteriol 92:1188–1195
    [Google Scholar]
  18. Kobe B., Deisenhofer J. 1994; The leucine-rich repeat: a versatile binding motif. Trends Biochem Sci 19:415–421
    [Google Scholar]
  19. Komori Y., Nonogaki T., Nikai T. 2001; Hemorrhagic activity and muscle damaging effect of Pseudomonas aeruginosa metalloproteinase (elastase. Toxicon 39:1327–1332
    [Google Scholar]
  20. Kuwahara T., Yamashita A., Hirakawa H., Nakayama H., Toh H., Okada N., Kuhara S., Hattori M., Hayashi T., Ohnishi Y. 2004; Genomic analysis of Bacteroides fragilis reveals extensive DNA inversions regulating cell surface adaptation. Proc Natl Acad Sci U S A 101:14919–14924
    [Google Scholar]
  21. Lantz M. S., Allen R. D., Duck L. W., Blume J. L., Switalski L. M., Hook M. 1991; Identification of Porphyromonas gingivalis components that mediate its interactions with fibronectin. J Bacteriol 173:4263–4270
    [Google Scholar]
  22. Luczak M., Obuch-Woszczatynski P., Pituch H., Leszczynski P., Martirosian G., Patrick S., Poxton I., Wintermans R. G., Dubreuil L., Meisel-Mikolajczyk F. 2001; Search for enterotoxin gene in Bacteroides fragilis strains isolated from clinical specimens in Poland, Great Britain, the Netherlands and France. Med Sci Monit 7:222–225
    [Google Scholar]
  23. Lutton D. A., Patrick S., Crockard A. D., Stewart L. D., Larkin M. J., Dermott E., McNeill T. A. 1991; Flow cytometric analysis of within-strain variation in polysaccharide expression by Bacteroides fragilis by use of murine monoclonal antibodies. J Med Microbiol 35:229–237
    [Google Scholar]
  24. Matsuka Y. V., Pillai S., Gubba S., Musser J. M., Olmsted S. B. 1999; Fibrinogen cleavage by the Streptococcus pyogenes extracellular cysteine protease and generation of antibodies that inhibit enzyme proteolytic activity. Infect Immun 67:4326–4333
    [Google Scholar]
  25. Myers L. L., Shoop D. S. 1987; Association of enterotoxigenic Bacteroides fragilis with diarrheal disease in young pigs. Am J Vet Res 48:774–775
    [Google Scholar]
  26. Myers L. L., Firehammer B. D., Shoop D. S., Border M. M. 1984; Bacteroides fragilis: a possible cause of acute diarrheal disease in newborn lambs. Infect Immun 44:241–244
    [Google Scholar]
  27. Nagy E., Manncke B., Werner H. 1994; Fibronectin and vitronectin binding of Bacteroides fragilis and eight other species of the genus. Zentralbl Bakteriol 281:235–239
    [Google Scholar]
  28. Neerman-Arbez M. 2001; The molecular basis of inherited afibrinogenaemia. Thromb Haemost 86:154–163
    [Google Scholar]
  29. Pancholi V., Chhatwal G. S. 2003; Housekeeping enzymes as virulence factors for pathogens. Int J Med Microbiol 293:391–401
    [Google Scholar]
  30. Patrick S. 2002; Bacteroides. In Molecular Medical Microbiology pp 1921–1948 Edited by Sussman M. London: Academic Press;
    [Google Scholar]
  31. Patrick S., Duerden B. I. 2006; Gram-negative non-spore forming obligate anaerobes. In Principles and Practice of Clinical Bacteriology, 2nd edn. pp 541–556 Edited by Gillespie S. H., Hawkey P. London: Wiley;
    [Google Scholar]
  32. Patrick S., Lutton D. A. 1990; Outer membrane proteins of Bacteroides fragilis grown in vivo. FEMS Microbiol Lett 71:1–4
    [Google Scholar]
  33. Patrick S., Stewart L. D., Damani N., Wilson K. G., Lutton D. A., Larkin M. J., Poxton I., Brown R. 1995; Immunological detection of Bacteroides fragilis in clinical samples. J Med Microbiol 43:99–109
    [Google Scholar]
  34. Patrick S., McKenna J. P., O'Hagan S., Dermott E. 1996; A comparison of the haemagglutinating and enzymic activities of Bacteroides fragilis whole cells and outer membrane vesicles. Microb Pathog 20:191–202
    [Google Scholar]
  35. Patrick S., Houston S., Thacker Z., Blakely G. W. 2009; Mutational analysis of genes implicated in LPS and capsular polysaccharide biosynthesis in the opportunistic pathogen Bacteroides fragilis. Microbiology 155:1039–1049
    [Google Scholar]
  36. Patti J. M., Allen B. L., McGavin M. J., Hook M. 1994; MSCRAMM-mediated adherence of microorganisms to host tissues. Annu Rev Microbiol 48:585–617
    [Google Scholar]
  37. Privitera G., Dublanchet A., Sebald M. 1979; Transfer of multiple antibiotic resistance between subspecies of Bacteroides fragilis. J Infect Dis 139:97–101
    [Google Scholar]
  38. Redondo M. C., Arbo M. D., Grindlinger J., Snydman D. R. 1995; Attributable mortality of bacteremia associated with the Bacteroides fragilis group. Clin Infect Dis 20:1492–1496
    [Google Scholar]
  39. Sharma A., Sojar H. T., Glurich I., Honma K., Kuramitsu H. K., Genco R. J. 1998; Cloning, expression, and sequencing of a cell surface antigen containing a leucine-rich repeat motif from Bacteroides forsythus ATCC 43037. Infect Immun 66:5703–5710
    [Google Scholar]
  40. Sijbrandi R., Den Blaauwen T., Tame J. R., Oudega B., Luirink J., Otto B. R. 2005; Characterization of an iron-regulated alpha-enolase of Bacteroides fragilis. Microbes Infect 7:9–18
    [Google Scholar]
  41. Szoke I., Pascu C., Nagy E., Ljung A., Wadstrom T. 1996; Binding of extracellular matrix proteins to the surface of anaerobic bacteria. J Med Microbiol 45:338–343
    [Google Scholar]
  42. Tally F. P., Ho J. L. 1987; Management of patients with intraabdominal infection due to colonic perforation. Curr Clin Top Infect Dis 8:266–295
    [Google Scholar]
  43. Van Tassell R. L., Wilkins T. D. 1978; Isolation of auxotrophs of Bacteroides fragilis. Can J Microbiol 24:1619–1621
    [Google Scholar]
  44. Wann E. R., Gurusiddappa S., Hook M. 2000; The fibronectin-binding MSCRAMM FnbpA of Staphylococcus aureus is a bifunctional protein that also binds to fibrinogen. J Biol Chem 275:13863–13871
    [Google Scholar]
  45. Weisel J. W. 2005; Fibrinogen and fibrin. Adv Protein Chem 70:247–299
    [Google Scholar]
  46. Weisel J. W., Stauffacher C. V., Bullitt E., Cohen C. 1985; A model for fibrinogen: domains and sequence. Science 230:1388–1391
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.038588-0
Loading
/content/journal/micro/10.1099/mic.0.038588-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error