1887

Abstract

To study the role of carbohydrates, in particular glucose, glucose 6-phosphate and mannose, as carbon substrates for extra- and intracellular replication of facultative intracellular enteric bacteria, mutants of two enteroinvasive (EIEC) strains and a serovar Typhimurium isolate were constructed that were defective in the uptake of glucose and mannose (Δ, ), glucose 6-phosphate (Δ) or all three carbohydrates (Δ, , ). The ability of these mutants to grow in RPMI medium containing the respective carbohydrates and in Caco-2 cells was compared with that of the corresponding wild-type strains. In the three strains, deletions of , or resulted in considerably different levels of inhibition of growth in the presence of glucose, mannose and glucose 6-phosphate, respectively, but hardly reduced their capability for intracellular replication in Caco-2 cells. Even the triple mutants Δ, , of the three enterobacterial strains were still able to replicate in Caco-2 cells, albeit at strain-specific lower rates than the corresponding wild-type strains.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.034744-0
2010-04-01
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/4/1176.html?itemId=/content/journal/micro/10.1099/mic.0.034744-0&mimeType=html&fmt=ahah

References

  1. Bell K. S., Sebaihia M., Pritchard L., Holden M. T., Hyman L. J., Holeva M. C., Thomson N. R., Bentley S. D., Churcher L. J. other authors 2004; Genome sequence of the enterobacterial phytopathogen Erwinia carotovora subsp. atroseptica and characterization of virulence factors. Proc Natl Acad Sci U S A 101:11105–11110
    [Google Scholar]
  2. Beuzón C. R., Meresse S., Unsworth K. E., Ruiz-Albert J., Garvis S., Waterman S. R., Ryder T. A., Boucrot E., Holden D. W. 2000; Salmonella maintains the integrity of its intracellular vacuole through the action of SifA. EMBO J 19:3235–3249
    [Google Scholar]
  3. Beuzón C. R., Salcedo S. P., Holden D. W. 2002; Growth and killing of a Salmonella enterica serovar Typhimurium sifA mutant strain in the cytosol of different host cell lines. Microbiology 148:2705–2715
    [Google Scholar]
  4. Bolivar F., Rodriguez R. L., Greene P. J., Betlach M. C., Heynker H. L., Boyer H. W., Crosa J. H., Falkow S. 1992; Construction and characterization of new cloning vehicles. II. A multipurpose cloning system. 1977. Biotechnology 24:153–171
    [Google Scholar]
  5. Bowden S. D., Rowley G., Hinton J. C., Thompson A. 2009; Glucose and glycolysis are required for the successful infection of macrophages and mice by Salmonella enterica serovar Typhimurium. Infect Immun 77:3117–3126
    [Google Scholar]
  6. Brumell J. H., Grinstein S. 2004; Salmonella redirects phagosomal maturation. Curr Opin Microbiol 7:78–84
    [Google Scholar]
  7. Clermont O., Bonacorsi S., Bingen E. 2000; Rapid and simple determination of the Escherichia coli phylogenetic group. Appl Environ Microbiol 66:4555–4558
    [Google Scholar]
  8. Cossart P., Sansonetti P. J. 2004; Bacterial invasion: the paradigms of enteroinvasive pathogens. Science 304:242–248
    [Google Scholar]
  9. Covarrubias L., Cervantes L., Covarrubias A., Soberon X., Vichido I., Blanco A., Kupersztoch-Portnoy Y. M., Bolivar F. 1981; Construction and characterization of new cloning vehicles. V. Mobilization and coding properties of pBR322 and several deletion derivatives including pBR327 and pBR328. Gene 13:25–35
    [Google Scholar]
  10. Dagberg B., Uhlin B. E. 1992; Regulation of virulence-associated plasmid genes in enteroinvasive Escherichia coli. J Bacteriol 174:7606–7612
    [Google Scholar]
  11. Datsenko K. A., Wanner B. L. 2000; One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97:6640–6645
    [Google Scholar]
  12. Death A., Ferenci T. 1993; The importance of the binding-protein-dependent Mgl system to the transport of glucose in Escherichia coli growing on low sugar concentrations. Res Microbiol 144:529–537
    [Google Scholar]
  13. Erni B., Zanolari B. 1985; The mannose-permease of the bacterial phosphotransferase system. Gene cloning and purification of the enzyme IIMan/IIIMan complex of Escherichia coli. J Biol Chem 260:15495–15503
    [Google Scholar]
  14. Erni B., Zanolari B., Kocher H. P. 1987; The mannose permease of Escherichia coli consists of three different proteins. Amino acid sequence and function in sugar transport, sugar phosphorylation, and penetration of phage lambda DNA. J Biol Chem 262:5238–5247
    [Google Scholar]
  15. Eylert E., Schar J., Mertins S., Stoll R., Bacher A., Goebel W., Eisenreich W. 2008; Carbon metabolism of Listeria monocytogenes growing inside macrophages. Mol Microbiol 69:1008–1017
    [Google Scholar]
  16. Hautefort I., Thompson A., Eriksson-Ygberg S., Parker M. L., Lucchini S., Danino V., Bongaerts R. J., Ahmad N., Rhen M., Hinton J. C. 2008; During infection of epithelial cells Salmonella enterica serovar Typhimurium undergoes a time-dependent transcriptional adaptation that results in simultaneous expression of three type 3 secretion systems. Cell Microbiol 10:958–984
    [Google Scholar]
  17. Henderson P. J., Giddens R. A., Jones-Mortimer M. C. 1977; Transport of galactose, glucose and their molecular analogues by Escherichia coli K12. Biochem J 162:309–320
    [Google Scholar]
  18. Island M. D., Wei B. Y., Kadner R. J. 1992; Structure and function of the uhp genes for the sugar phosphate transport system in Escherichia coli and Salmonella typhimurium. J Bacteriol 174:2754–2762
    [Google Scholar]
  19. Jin Q., Yuan Z., Xu J., Wang Y., Shen Y., Lu W., Wang J., Liu H., Yang J. other authors 2002; Genome sequence of Shigella flexneri 2a: insights into pathogenicity through comparison with genomes of Escherichia coli K12 and O157. Nucleic Acids Res 30:4432–4441
    [Google Scholar]
  20. Johnson T. J., Kariyawasam S., Wannemuehler Y., Mangiamele P., Johnson S. J., Doetkott C., Skyberg J. A., Lynne A. M., Johnson J. R., Nolan L. K. 2007; The genome sequence of avian pathogenic Escherichia coli strain O1 : K1 : H7 shares strong similarities with human extraintestinal pathogenic E. coli genomes. J Bacteriol 189:3228–3236
    [Google Scholar]
  21. Klumpp J., Fuchs T. M. 2007; Identification of novel genes in genomic islands that contribute to Salmonella typhimurium replication in macrophages. Microbiology 153:1207–1220
    [Google Scholar]
  22. Lafont F., van der Goot F. G. 2005; Bacterial invasion via lipid rafts. Cell Microbiol 7:613–620
    [Google Scholar]
  23. Lucchini S., Liu H., Jin Q., Hinton J. C., Yu J. 2005; Transcriptional adaptation of Shigella flexneri during infection of macrophages and epithelial cells: insights into the strategies of a cytosolic bacterial pathogen. Infect Immun 73:88–102
    [Google Scholar]
  24. McClelland M., Sanderson K. E., Spieth J., Clifton S. W., Latreille P., Courtney L., Porwollik S., Ali J., Dante M. other authors 2001; Complete genome sequence of Salmonella enterica serovar Typhimurium LT2. Nature 413:852–856
    [Google Scholar]
  25. Meyer D., Schneider-Fresenius C., Horlacher R., Peist R., Boos W. 1997; Molecular characterization of glucokinase from Escherichia coli K-12. J Bacteriol 179:1298–1306
    [Google Scholar]
  26. Nicoletti M., Superti F., Conti C., Calconi A., Zagaglia C. 1988; Virulence factors of lactose-negative Escherichia coli strains isolated from children with diarrhea in Somalia. J Clin Microbiol 26:524–529
    [Google Scholar]
  27. Phalipon A., Sansonetti P. J. 2007; Shigella's ways of manipulating the host intestinal innate and adaptive immune system: a tool box for survival?. Immunol Cell Biol 85:119–129
    [Google Scholar]
  28. Postma P. W. 1977; Galactose transport in Salmonella typhimurium. J Bacteriol 129:630–639
    [Google Scholar]
  29. Postma P. W., Lengeler J. W., Jacobson G. R. 1993; Phosphoenolpyruvate : carbohydrate phosphotransferase systems of bacteria. Microbiol Rev 57:543–594
    [Google Scholar]
  30. Sansonetti P. J., d'Hauteville H., Formal S. B., Toucas M. 1982; Plasmid-mediated invasiveness of “ Shigella-like” Escherichia coli. Ann Microbiol (Paris 133:351–355
    [Google Scholar]
  31. Scherer C. A., Hantman M. J., Miller S. I. 1997; Salmonella invasion and delivery of protein effectors to mammalian cell cytoplasm. Trends Microbiol 5:127–129
    [Google Scholar]
  32. Schwoppe C., Winkler H. H., Neuhaus H. E. 2002; Properties of the glucose-6-phosphate transporter from Chlamydia pneumoniae (HPTcp) and the glucose-6-phosphate sensor from Escherichia coli (UhpC. J Bacteriol 184:2108–2115
    [Google Scholar]
  33. Schwoppe C., Winkler H. H., Neuhaus H. E. 2003; Connection of transport and sensing by UhpC, the sensor for external glucose-6-phosphate in Escherichia coli. Eur J Biochem 270:1450–1457
    [Google Scholar]
  34. Stock J. B., Waygood E. B., Meadow N. D., Postma P. W., Roseman S. 1982; Sugar transport by the bacterial phosphotransferase system. The glucose receptors of the Salmonella typhimurium phosphotransferase system. J Biol Chem 257:14543–14552
    [Google Scholar]
  35. Vazquez-Torres A., Fang F. C. 2000; Cellular routes of invasion by enteropathogens. Curr Opin Microbiol 3:54–59
    [Google Scholar]
  36. Verhamme D. T., Postma P. W., Crielaard W., Hellingwerf K. J. 2002; Cooperativity in signal transfer through the Uhp system of Escherichia coli. J Bacteriol 184:4205–4210
    [Google Scholar]
  37. Welch R. A., Burland V., Plunkett G. III, Redford P., Roesch P., Rasko D., Buckles E. L., Liou S. R., Boutin A. other authors 2002; Extensive mosaic structure revealed by the complete genome sequence of uropathogenic Escherichia coli. Proc Natl Acad Sci U S A 99:17020–17024
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.034744-0
Loading
/content/journal/micro/10.1099/mic.0.034744-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error