1887

Abstract

Carbapenem-resistant (CRE) are an urgent public health threat. Genomic sequencing is an important tool for investigating CRE. Through the Division of Healthcare Quality Promotion Sentinel Surveillance system, we collected CRE and carbapenem-susceptible (CSE) from nine clinical laboratories in the USA from 2013 to 2016 and analysed both phenotypic and genomic sequencing data for 680 isolates. We describe the molecular epidemiology and antimicrobial susceptibility testing (AST) data of this collection of isolates. We also performed a phenotype–genotype correlation for the carbapenems and evaluated the presence of virulence genes in complex isolates. These AST and genomic sequencing data can be used to compare and contrast CRE and CSE at these sites and serve as a resource for the antimicrobial resistance research community.

Funding
This study was supported by the:
  • National Center for Emerging and Zoonotic Infectious Diseases (Award 200-2011-42064/0004)
    • Principle Award Recipient: J.Kristie Johnson
  • National Center for Emerging and Zoonotic Infectious Diseases (Award 200-2011-42064)
    • Principle Award Recipient: J.Kristie Johnson
  • National Center for Emerging and Zoonotic Infectious Diseases (Award CDC AMD #200-2016-92313)
    • Principle Award Recipient: DavidM. Engelthaler
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.001119
2023-11-21
2024-05-16
Loading full text...

Full text loading...

/deliver/fulltext/mgen/9/11/mgen001119.html?itemId=/content/journal/mgen/10.1099/mgen.0.001119&mimeType=html&fmt=ahah

References

  1. Jernigan JA, Hatfield KM, Wolford H, Nelson RE, Olubajo B et al. Multidrug-resistant bacterial infections in U.S. hospitalized patients, 2012-2017. N Engl J Med 2020; 382:1309–1319 [View Article] [PubMed]
    [Google Scholar]
  2. Centers for Disease Control and Prevention Antibiotic resistance threats in the United States 2019; 2019
  3. Babiker A, Clarke LG, Saul M, Gealey JA, Clancy CJ et al. Changing epidemiology and decreased mortality associated with carbapenem-resistant Gram-negative bacteria, 2000-2017. Clin Infect Dis 2021; 73:e4521–e4530 [View Article] [PubMed]
    [Google Scholar]
  4. Nelson RE, Hatfield KM, Wolford H, Samore MH, Scott RD II et al. National estimates of healthcare costs associated with multidrug-resistant bacterial infections among hospitalized patients in the United States. Clin Infect Dis 2021; 72:S17–S26 [View Article]
    [Google Scholar]
  5. Bonomo RA, Burd EM, Conly J, Limbago BM, Poirel L et al. Carbapenemase-producing organisms: a global scourge. Clin Infect Dis 2018; 66:1290–1297 [View Article] [PubMed]
    [Google Scholar]
  6. Logan LK, Weinstein RA. The epidemiology of carbapenem-resistant Enterobacteriaceae: the impact and evolution of a global menace. J Infect Dis 2017; 215:S28–S36 [View Article] [PubMed]
    [Google Scholar]
  7. Yigit H, Queenan AM, Anderson GJ, Domenech-Sanchez A, Biddle JW et al. Novel carbapenem-hydrolyzing beta-lactamase, KPC-1, from a carbapenem-resistant strain of Klebsiella pneumoniae. Antimicrob Agents Chemother 2001; 45:1151–1161 [View Article] [PubMed]
    [Google Scholar]
  8. Kitchel B, Rasheed JK, Patel JB, Srinivasan A, Navon-Venezia S et al. Molecular epidemiology of KPC-producing Klebsiella pneumoniae isolates in the United States: clonal expansion of multilocus sequence type 258. Antimicrob Agents Chemother 2009; 53:3365–3370 [View Article] [PubMed]
    [Google Scholar]
  9. Iregui A, Ha K, Meleney K, Landman D, Quale J. Carbapenemases in New York City: the continued decline of KPC-producing Klebsiella pneumoniae, but a new threat emerges. J Antimicrob Chemother 2018; 73:2997–3000 [View Article] [PubMed]
    [Google Scholar]
  10. van Duin D, Arias CA, Komarow L, Chen L, Hanson BM et al. Molecular and clinical epidemiology of carbapenem-resistant Enterobacterales in the USA (CRACKLE-2): a prospective cohort study. Lancet Infect Dis 2020; 20:731–741 [View Article] [PubMed]
    [Google Scholar]
  11. Shugart A, Mahon G, Epstein L, Huang JY, McAllister G et al. Changing US epidemiology of NDM-producing carbapenem-resistant enterobacteriaceae, 2017–2019. Infect Control Hosp Epidemiol 2020; 41:s25–s26 [View Article]
    [Google Scholar]
  12. Halpin AL, McDonald LC, Elkins CA. Framing bacterial genomics for public health (Care). J Clin Microbiol 2021; 59:e0013521 [View Article] [PubMed]
    [Google Scholar]
  13. Carlos CC, Masim MAL, Lagrada ML, Gayeta JM, Macaranas PKV et al. Genome sequencing identifies previously unrecognized Klebsiella pneumoniae outbreaks in neonatal intensive care units in the Philippines. Clin Infect Dis 2021; 73:S316–S324 [View Article] [PubMed]
    [Google Scholar]
  14. de Man TJB, Yaffee AQ, Zhu W, Batra D, Alyanak E et al. Multispecies outbreak of verona integron-encoded metallo-ß-lactamase-producing multidrug resistant bacteria driven by a promiscuous incompatibility group A/C2 plasmid. Clin Infect Dis 2021; 72:414–420 [View Article] [PubMed]
    [Google Scholar]
  15. Gomes DJ, Bardossy AC, Chen L, Forero A, Gorzalski A et al. Transmission of novel Klebsiella pneumoniae carbapenemase-producing Escherichia coli sequence type 1193 among residents and caregivers in a community-based, residential care setting-Nevada, 2018. Infect Control Hosp Epidemiol 2020; 41:1341–1343 [View Article] [PubMed]
    [Google Scholar]
  16. Snitkin ES, Zelazny AM, Thomas PJ, Stock F et al.NISC Comparative Sequencing Program Group Tracking a hospital outbreak of carbapenem-resistant Klebsiella pneumoniae with whole-genome sequencing. Sci Transl Med 2012; 4:148ra116 [View Article] [PubMed]
    [Google Scholar]
  17. Sundermann AJ, Miller JK, Marsh JW, Saul MI, Shutt KA et al. Automated data mining of the electronic health record for investigation of healthcare-associated outbreaks. Infect Control Hosp Epidemiol 2019; 40:314–319 [View Article] [PubMed]
    [Google Scholar]
  18. Karlsson M, Lutgring JD, Ansari U, Lawsin A, Albrecht V et al. Molecular characterization of carbapenem-resistant enterobacterales collected in the United States. Microb Drug Resist 2022; 28:389–397 [View Article] [PubMed]
    [Google Scholar]
  19. Walters MS, Grass JE, Bulens SN, Hancock EB, Phipps EC et al. Carbapenem-resistant Pseudomonas aeruginosa at US emerging infections program sites, 2015. Emerg Infect Dis 2019; 25:1281–1288 [View Article] [PubMed]
    [Google Scholar]
  20. Karlsson M, Stanton RA, Ansari U, McAllister G, Chan MY et al. Identification of a carbapenemase-producing hypervirulent Klebsiella pneumoniae isolate in the United States. Antimicrob Agents Chemother 2019; 63:e00519-19 [View Article] [PubMed]
    [Google Scholar]
  21. Johnning A, Karami N, Tång Hallbäck E, Müller V, Nyberg L et al. The resistomes of six carbapenem-resistant pathogens - a critical genotype-phenotype analysis. Microb Genom 2018; 4:e000233 [View Article] [PubMed]
    [Google Scholar]
  22. Lesho E, Clifford R, Onmus-Leone F, Appalla L, Snesrud E et al. The challenges of implementing next generation sequencing across a large healthcare system, and the molecular epidemiology and antibiotic susceptibilities of carbapenemase-producing bacteria in the healthcare system of the U.S. department of defense. PLoS One 2016; 11:e0155770 [View Article] [PubMed]
    [Google Scholar]
  23. Yang Q, Wang H, Sun H, Chen H, Xu Y et al. Phenotypic and genotypic characterization of Enterobacteriaceae with decreased susceptibility to carbapenems: results from large hospital-based surveillance studies in China. Antimicrob Agents Chemother 2010; 54:573–577 [View Article] [PubMed]
    [Google Scholar]
  24. Su M, Satola SW, Read TD. Genome-based prediction of bacterial antibiotic resistance. J Clin Microbiol 2019; 57:e01405-18 [View Article] [PubMed]
    [Google Scholar]
  25. Fröding I, Hasan B, Sylvin I, Coorens M, Nauclér P et al. Extended-spectrum-β-lactamase- and plasmid AmpC-producing Escherichia coli causing community-onset bloodstream infection: association of bacterial clones and virulence genes with septic shock, source of infection, and recurrence. Antimicrob Agents Chemother 2020; 64:e02351-19 [View Article] [PubMed]
    [Google Scholar]
  26. Babiker A, Evans DR, Griffith MP, McElheny CL, Hassan M et al. Clinical and genomic epidemiology of carbapenem-nonsusceptible Citrobacter spp. at a tertiary health care center over 2 decades. J Clin Microbiol 2020; 58:e00275-20 [View Article] [PubMed]
    [Google Scholar]
  27. Gomez-Simmonds A, Annavajhala MK, Wang Z, Macesic N, Hu Y et al. Genomic and geographic context for the evolution of high-risk carbapenem-resistant Enterobacter cloacae complex clones ST171 and ST78. mBio 2018; 9:e00542-18 [View Article] [PubMed]
    [Google Scholar]
  28. Johnston BD, Thuras P, Porter SB, Anacker M, VonBank B et al. Global molecular epidemiology of carbapenem-resistant Escherichia coli (2002-2017). Eur J Clin Microbiol Infect Dis 2021 [View Article] [PubMed]
    [Google Scholar]
  29. Sabour S, Huang JY, Bhatnagar A, Gilbert SE, Karlsson M et al. Detection and characterization of targeted carbapenem-resistant health care-associated threats: findings from the antibiotic resistance laboratory network, 2017 to 2019. Antimicrob Agents Chemother 2021; 65:e0110521 [View Article] [PubMed]
    [Google Scholar]
  30. Zerr DM, Weissman SJ, Zhou C, Kronman MP, Adler AL et al. The molecular and clinical epidemiology of extended-spectrum cephalosporin- and carbapenem-resistant enterobacteriaceae at 4 US pediatric hospitals. J Pediatric Infect Dis Soc 2017; 6:366–375 [View Article] [PubMed]
    [Google Scholar]
  31. Centers for Disease Control and Prevention Facility Guidance for Control of Carbapenem-resistant Enterobacteriaceae (CRE): November 2015 Update – CRE Toolkit. n.d https://www.cdc.gov/hai/pdfs/cre/CRE-guidance-508.pdf accessed 8 February 2022
  32. Chea N, Bulens SN, Kongphet-Tran T, Lynfield R, Shaw KM et al. Improved phenotype-based definition for identifying carbapenemase producers among carbapenem-resistant enterobacteriaceae. Emerg Infect Dis 2015; 21:1611–1616 [View Article] [PubMed]
    [Google Scholar]
  33. Clinical and Laboratory Standards Institute Performance standards for antimicrobial susceptibility testing; 23rd informational supplement. In CLSI Document M100-S23 Wayne, PA: Clinical and Laboratory Standards Institute; 2013
    [Google Scholar]
  34. Clinical and Laboratory Standards Institute Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. In CLSI Document M07-11, 11th. edn Wayne, PA: Clinical and Laboratory Standards Institute; 2018
    [Google Scholar]
  35. Clinical and Laboratory Standards Institute Performance standards for antimicrobial susceptibility testing; 30th informational supplement. In CLSI Document M100-S30 Wayne, PA: Clinical and Laboratory Standards Institute; 2020
    [Google Scholar]
  36. Food and Drug Administration FDA-Recognized Antimicrobial Susceptibility Test Interpretive Criteria. n.d https://www.fda.gov/drugs/development-resources/fda-recognized-antimicrobial-susceptibility-test-interpretive-criteria accessed 8 February 2022
  37. Vlachos N. QuAISAR-H Github. n.d https://github.com/DHQP/QuAISAR_singularity accessed 22 February 2022
  38. Bushnell B. BBMap. n.d https://sourceforge.net/projects/bbmap/ accessed 22 February 2022
  39. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 2014; 30:2114–2120 [View Article] [PubMed]
    [Google Scholar]
  40. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article] [PubMed]
    [Google Scholar]
  41. Seemann T. mlst Github. n.d https://github.com/tseemann/mlst accessed 22 February 2022
  42. Jolley KA, Maiden MCJ. BIGSdb: scalable analysis of bacterial genome variation at the population level. BMC Bioinformatics 2010; 11:595 [View Article] [PubMed]
    [Google Scholar]
  43. Feldgarden M, Brover V, Haft DH, Prasad AB, Slotta DJ et al. Validating the AMRFinder tool and resistance gene database by using antimicrobial resistance genotype-phenotype correlations in a collection of isolates. Antimicrob Agents Chemother 2019; 63:e00483-19 [View Article] [PubMed]
    [Google Scholar]
  44. Gupta SK, Padmanabhan BR, Diene SM, Lopez-Rojas R, Kempf M et al. ARG-ANNOT, a new bioinformatic tool to discover antibiotic resistance genes in bacterial genomes. Antimicrob Agents Chemother 2014; 58:212–220 [View Article] [PubMed]
    [Google Scholar]
  45. Inouye M, Dashnow H, Raven L-A, Schultz MB, Pope BJ et al. SRST2: rapid genomic surveillance for public health and hospital microbiology labs. Genome Med 2014; 6:90 [View Article] [PubMed]
    [Google Scholar]
  46. Stanton RA, Vlachos N, Halpin AL. GAMMA: a tool for the rapid identification, classification and annotation of translated gene matches from sequencing data. Bioinformatics 2022; 38:546–548 [View Article] [PubMed]
    [Google Scholar]
  47. Zankari E, Hasman H, Cosentino S, Vestergaard M, Rasmussen S et al. Identification of acquired antimicrobial resistance genes. J Antimicrob Chemother 2012; 67:2640–2644 [View Article] [PubMed]
    [Google Scholar]
  48. Carattoli A, Zankari E, García-Fernández A, Voldby Larsen M, Lund O et al. In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob Agents Chemother 2014; 58:3895–3903 [View Article] [PubMed]
    [Google Scholar]
  49. Russo TA, Olson R, Fang C-T, Stoesser N, Miller M et al. Identification of biomarkers for differentiation of hypervirulent Klebsiella pneumoniae from classical K. pneumoniae. J Clin Microbiol 2018; 56:e00776-18 [View Article] [PubMed]
    [Google Scholar]
  50. Wyres KL, Wick RR, Gorrie C, Jenney A, Follador R et al. Identification of Klebsiella capsule synthesis loci from whole genome data. Microb Genom 2016; 2:e000102 [View Article] [PubMed]
    [Google Scholar]
  51. Sahl JW, Lemmer D, Travis J, Schupp JM, Gillece JD et al. NASP: an accurate, rapid method for the identification of SNPs in WGS datasets that supports flexible input and output formats. Microb Genom 2016; 2:e000074 [View Article] [PubMed]
    [Google Scholar]
  52. Bowers JR, Kitchel B, Driebe EM, MacCannell DR, Roe C et al. Genomic analysis of the emergence and rapid global dissemination of the clonal group 258 Klebsiella pneumoniae pandemic. PLoS One 2015; 10:e0133727 [View Article]
    [Google Scholar]
  53. Bowers JR, Monroy-Nieto J, Gade L, Travis J, Refojo N et al. Rhizopus microsporus infections associated with surgical procedures, Argentina, 2006-2014. Emerg Infect Dis 2020; 26:937–944 [View Article] [PubMed]
    [Google Scholar]
  54. Deleo FR, Chen L, Porcella SF, Martens CA, Kobayashi SD et al. Molecular dissection of the evolution of carbapenem-resistant multilocus sequence type 258 Klebsiella pneumoniae. Proc Natl Acad Sci U S A 2014; 111:4988–4993 [View Article] [PubMed]
    [Google Scholar]
  55. Li H. n.d. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. ArXiv:13033997 [q-bioGN]
    [Google Scholar]
  56. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K et al. The genome analysis toolkit: a mapreduce framework for analyzing next-generation DNA sequencing data. Genome Res 2010; 20:1297–1303 [View Article] [PubMed]
    [Google Scholar]
  57. Tamura K, Stecher G, Kumar S. MEGA11: Molecular Evolutionary Genetics Analysis version 11. Mol Biol Evol 2021; 38:3022–3027 [View Article] [PubMed]
    [Google Scholar]
  58. Argimón S, Abudahab K, Goater RJE, Fedosejev A, Bhai J et al. Microreact: visualizing and sharing data for genomic epidemiology and phylogeography. Microb Genom 2016; 2:e000093 [View Article] [PubMed]
    [Google Scholar]
  59. Decré D, Verdet C, Emirian A, Le Gourrierec T, Petit J-C et al. Emerging severe and fatal infections due to Klebsiella pneumoniae in two university hospitals in France. J Clin Microbiol 2011; 49:3012–3014 [View Article] [PubMed]
    [Google Scholar]
  60. Jung SW, Chae HJ, Park YJ, Yu JK, Kim SY et al. Microbiological and clinical characteristics of bacteraemia caused by the hypermucoviscosity phenotype of Klebsiella pneumoniae in Korea. Epidemiol Infect 2013; 141:334–340 [View Article] [PubMed]
    [Google Scholar]
  61. Russo TA, Marr CM. Hypervirulent Klebsiella pneumoniae. Clin Microbiol Rev 2019; 32:e00001-19 [View Article] [PubMed]
    [Google Scholar]
  62. Shon AS, Bajwa RPS, Russo TA. Hypervirulent (hypermucoviscous) Klebsiella pneumoniae: a new and dangerous breed. Virulence 2013; 4:107–118 [View Article] [PubMed]
    [Google Scholar]
  63. Nassif X, Honoré N, Vasselon T, Cole ST, Sansonetti PJ. Positive control of colanic acid synthesis in Escherichia coli by rmpA and rmpB, two virulence-plasmid genes of Klebsiella pneumoniae. Mol Microbiol 1989; 3:1349–1359 [View Article] [PubMed]
    [Google Scholar]
  64. Guh AY, Bulens SN, Mu Y, Jacob JT, Reno J et al. Epidemiology of carbapenem-resistant enterobacteriaceae in 7 US communities, 2012-2013. JAMA 2015; 314:1479–1487 [View Article] [PubMed]
    [Google Scholar]
  65. Abdallah M, Olafisoye O, Cortes C, Urban C, Landman D et al. Rise and fall of KPC-producing Klebsiella pneumoniae in New York City. J Antimicrob Chemother 2016; 71:2945–2948 [View Article] [PubMed]
    [Google Scholar]
  66. Bratu S, Landman D, Haag R, Recco R, Eramo A et al. Rapid spread of carbapenem-resistant Klebsiella pneumoniae in New York City: a new threat to our antibiotic armamentarium. Arch Intern Med 2005; 165:1430–1435 [View Article] [PubMed]
    [Google Scholar]
  67. Landman D, Babu E, Shah N, Kelly P, Olawole O et al. Transmission of carbapenem-resistant pathogens in New York City hospitals: progress and frustration. J Antimicrob Chemother 2012; 67:1427–1431 [View Article] [PubMed]
    [Google Scholar]
  68. Mouton JW, Muller AE, Canton R, Giske CG, Kahlmeter G et al. MIC-based dose adjustment: facts and fables. J Antimicrob Chemother 2018; 73:564–568 [View Article] [PubMed]
    [Google Scholar]
  69. Cañada-García JE, Grippo N, de Arellano ER, Bautista V, Lara N et al. Phenotypic and molecular characterization of IMP-producing enterobacterales in Spain: predominance of IMP-8 in Klebsiella pneumoniae and IMP-22 in Enterobacter roggenkampii. Front Microbiol 2022; 13:1000787 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.001119
Loading
/content/journal/mgen/10.1099/mgen.0.001119
Loading

Data & Media loading...

Supplements

Supplementary material 1

EXCEL

Supplementary material 2

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error