1887

Abstract

Species of the floating, freshwater fern form a well-characterized symbiotic association with the non-culturable cyanobacterium , which fixes nitrogen for the plant. However, several cyanobacterial strains have over the years been isolated and cultured from from all over the world. The genomes of 10 of these strains were sequenced and compared with each other, with other symbiotic cyanobacterial strains, and with similar strains that were not isolated from a symbiotic association. The 10 strains fell into three distinct groups: six strains were nearly identical to the non-symbiotic strain, () ATCC 29413; three were similar to the symbiotic strain, , and one, sp. 2RC, was most similar to non-symbiotic strains of . However, sp. 2RC was unusual because it has three sets of nitrogenase genes; it has complete gene clusters for two distinct Mo-nitrogenases and an alternative V-nitrogenase. Genes for Mo-nitrogenase, sugar transport, chemotaxis and pili characterized all the symbiotic strains. Several of the strains infected the liverwort , including ATCC 29413, which did not originate from but rather from a sewage pond. However, only sp. 2RC, which produced highly motile hormogonia, was capable of high-frequency infection of . Thus, some of these strains, which grow readily in the laboratory, may be useful in establishing novel symbiotic associations with other plants.

Funding
This study was supported by the:
  • Directorate for Biological Sciences (Award MCB-1818298)
    • Principle Award Recipient: TeresaThiel
  • This is an open-access article distributed under the terms of the Creative Commons Attribution NonCommercial License.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000595
2021-06-28
2024-03-19
Loading full text...

Full text loading...

/deliver/fulltext/mgen/7/6/mgen000595.html?itemId=/content/journal/mgen/10.1099/mgen.0.000595&mimeType=html&fmt=ahah

References

  1. Ventura W, Watanabe I. Green manure production of Azolla microphylla and Sesbania rostrata and their long-term effects on rice yields and soil fertility. Biol Fertil Soils 1993; 15:241–248 [View Article]
    [Google Scholar]
  2. Perkins SK, Peters GA. The Azolla-Anabaena symbiosis: Endophyte continuity in the Azolla life-cycle is facilitated by epidermal trichomes. I. Partitioning of the endophytic Anabaena into developing sporocarps. New Phytol 1993; 123:53–64
    [Google Scholar]
  3. Nagalingum NS, Schneider H, Pryer KM. Comparative morphology of reproductive structures in heterosporous water ferns and a reevaluation of the sporocarp. Int J Plant Sci 2006; 167:805–815 [View Article]
    [Google Scholar]
  4. Lumpkin TA, Plucknett DL. Azolla: botany, physiology, and use as a green manure. Econ Bot 1980; 34:111–153 [View Article]
    [Google Scholar]
  5. Newton JW, Herman AI. Isolation of cyanobacteria from the aquatic fern, Azolla. Arch Microbiol 1979; 120:161–165 [View Article]
    [Google Scholar]
  6. Franche C, Cohen-Bazire G. Evolutionary divergence in the nifHDK gene region among nine symbiotic Anabaena azollae and between Anabaena azollae and some free-living heterocystous cyanobacteria. Symbiosis 1987; 3:159–178
    [Google Scholar]
  7. Nierzwicki-Bauer SA, Haselkorn R. Differences in mRNA levels in Anabaena living freely or in symbiotic association with Azolla. Embo J 1986; 5:29–35 [View Article] [PubMed]
    [Google Scholar]
  8. Meeks JC, Joseph CM, Haselkorn R. Organization of the nif genes in cyanobacteria in symbiotic association with Azolla and Anthoceros. Arch Microbiol 1988; 150:61–71 [View Article] [PubMed]
    [Google Scholar]
  9. Sood A, Prasanna R, Prasanna BM, Singh PK. Genetic diversity among and within cultured cyanobionts of diverse species of Azolla. Folia Microbiol 2008; 53:35–43 [View Article] [PubMed]
    [Google Scholar]
  10. Papaefthimiou D, Hrouzek P, Mugnai MA, Lukesova A, Turicchia S et al. Differential patterns of evolution and distribution of the symbiotic behaviour in Nostocacean cyanobacteria. Int J Syst Evol Microbiol 2008; 58:553–564 [View Article]
    [Google Scholar]
  11. Papaefthimiou D, Van Hove C, Lejeune A, Rasmussen U, Wilmotte A. Diversity and host specificity of Azolla cyanobionts. J Phycol 2008; 44:60–70 [View Article] [PubMed]
    [Google Scholar]
  12. Dijkhuizen LW, Brouwer P, Bolhuis H, Reichart G-J, Koppers N et al. Is there foul play in the leaf pocket? The metagenome of floating fern azolla reveals endophytes that do not fix N2 but may denitrify. New Phytol 2018; 217:453–466 [View Article] [PubMed]
    [Google Scholar]
  13. Kumar U, Nayak AK, Panneerselvam P, Kumar A, Mohanty S et al. Cyanobiont diversity in six azolla spp. And relation to azolla-nutrient profiling. Planta 2019; 249:1435–1447 [View Article] [PubMed]
    [Google Scholar]
  14. Banach A, Kuźniar A, Mencfel R, Wolińska A. The study on the cultivable microbiome of the aquatic fern Azolla filiculoides L. As new source of beneficial microorganisms. Appl Sci 2019; 9:2143 [View Article]
    [Google Scholar]
  15. Ran L, Larsson J, Vigil-Stenman T, Nylander JAA, Ininbergs K. Genome erosion in a nitrogen-fixing vertically transmitted endosymbiotic multicellular cyanobacterium. PLoS One 2010; 5:e11486 [View Article] [PubMed]
    [Google Scholar]
  16. Pereira AL, Vasconcelos V. Classification and phylogeny of the cyanobiont Anabaena azollae Strasburger: an answered question?. Int J Syst Evol Microbiol 2014; 64:1830–1840 [View Article]
    [Google Scholar]
  17. Li F-W, Brouwer P, Carretero-Paulet L, Cheng S, de Vries J et al. Fern genomes elucidate land plant evolution and cyanobacterial symbioses. Nat Plants 2018; 4:460–472 [View Article] [PubMed]
    [Google Scholar]
  18. Tang LF, Watanabe I, Liu CC. Limited multiplication of symbiotic cyanobacteria of Azolla spp. Appl Environ Microbiol 1990; 56:3623–3626 [View Article] [PubMed]
    [Google Scholar]
  19. Bergman B, Rai A, Rasmussen U. Cyanobacterial Associations. In Elmerich C, Newton W. (editors) Associative and Endophytic Nitrogen-fixing Bacteria and Cyanobacterial Associations Nitrogen Fixation: Origins, Applications, and Research Progress Dordrecht: Springer; 2007 pp 257–301
    [Google Scholar]
  20. Adams DG, Duggan PS. Cyanobacteria-bryophyte symbioses. J Exp Bot 2008; 59:1047–1058 [View Article] [PubMed]
    [Google Scholar]
  21. Warshan D, Espinoza JL, Stuart RK, Richter RA, Kim S-Y et al. Feathermoss and epiphytic Nostoc cooperate differently: expanding the spectrum of plant–cyanobacteria symbiosis. ISME J 2017; 11:2821–2833 [View Article]
    [Google Scholar]
  22. Rikkinen J, Virtanen V. Genetic diversity in cyanobacterial symbionts of thalloid bryophytes. J Experiment Bot 2008; 59:1013–1021 [View Article]
    [Google Scholar]
  23. Stewart WDP, Rodgers GA. Studies on the symbiotic blue-green algae of anthoceros, Blasia and Peltigera. . Ecological Bulletins 1978; 26:247–259
    [Google Scholar]
  24. Zimmerman WJ, Rosen B, Lumpkin T. Enzymatic, lectin, and morphological characterization and classification of presumptive cyanobionts from Azolla lam. New Phytol 1989; 113:497–503 [View Article]
    [Google Scholar]
  25. Tischer RG. Pure Culture of Anabaena flos-aquae A-37. Nature 1965; 205:419–420 [View Article] [PubMed]
    [Google Scholar]
  26. Healey FP. Characteristics of phosphorus deficiency in Anabaena. J Phycology 1973; 9:383–394
    [Google Scholar]
  27. Wolk CP, Shaffer PW. Heterotrophic micro- and macrocultures of a nitrogen-fixing cyanobacterium. Arch Microbiol 1976; 110:145–147 [View Article] [PubMed]
    [Google Scholar]
  28. Currier TC, Haury JF, Wolk CP. Isolation and preliminary characterization of auxotrophs of a filamentous cyanobacterium. J Bacteriol 1977; 129:1556–1562 [View Article] [PubMed]
    [Google Scholar]
  29. Haury JF, Wolk CP. Classes of Anabaena variabilis mutants with oxygen-sensitive nitrogenase activity. J Bacteriol 1978; 136:688–692 [View Article] [PubMed]
    [Google Scholar]
  30. Peterson RB, Wolk CP. High recovery of nitrogenase activity and of 55Fe-labeled nitrogenase in heterocysts isolated from Anabaena variabilis. Proc Natl Acad Sci USA 1978; 75:6271–6275 [View Article] [PubMed]
    [Google Scholar]
  31. Meeks JC, Wolk CP, Lockau W, Schilling N, Shaffer PW et al. Pathways of assimilation of [13N]N2 and 13NH4+ by cyanobacteria with and without heterocysts. J Bacteriol 1978; 134:125–130 [View Article] [PubMed]
    [Google Scholar]
  32. Hodkinson BP, Allen JL, Forrest LL, Goffinet B, Sérusiaux E et al. Lichen-symbiotic cyanobacteria associated with Peltigera have an alternative vanadium-dependent nitrogen fixation system. Eur J Phycol 2014; 49:11–19 [View Article]
    [Google Scholar]
  33. Meeks JC. Symbiosis between nitrogen-fixing cyanobacteria and plants: the establishment of symbiosis causes dramatic morphological and physiological changes in the cyanobacterium. BioScience 1998; 48:266–276
    [Google Scholar]
  34. Warshan D, Liaimer A, Pederson E, Kim S-. Y, Shapiro N et al. Genomic changes associated with the evolutionary transitions of Nostoc to a plant symbiont. Mol Biol Evol 2018; 35:1160–1175 [View Article] [PubMed]
    [Google Scholar]
  35. Gagunashvili AN, Andrésson ÓS. Distinctive characters of Nostoc genomes in cyanolichens. BMC Genomics 2018; 19:434434 [View Article]
    [Google Scholar]
  36. Wong FCY, Meeks JC. Establishment of a functional symbiosis between the cyanobacterium Nostoc punctiforme and the bryophyte Anthoceros punctatus requires genes involved in nitrogen control and initiation of heterocyst differentiation. Microbiol 2002; 148:315–323 [View Article] [PubMed]
    [Google Scholar]
  37. Duggan PS, Thiel T, Adams DG. Symbiosis between the cyanobacterium Nostoc and the liverwort Blasia requires a CheR-type MCP methyltransferase. Symbiosis 2013; 59:111–120 [View Article]
    [Google Scholar]
  38. Rodgers GA, Stewart WDP. The cyanophyte-hepatic symbiosis I. morphology and physiology. New Phytol 1977; 78:441–458 [View Article]
    [Google Scholar]
  39. Adams DG. Cyanobacteria in symbiosis with hornworts and Lliverworts. In Rai AN BB, Rasmussen U. (editors) Cyanobacteria in Symbiosis Dordrecht: Springer; 2002
    [Google Scholar]
  40. Kimura J, Nakano T. Reconstitution of a Blasia-Nostoc symbiotic association under axenic conditions. Nova Hedwigia 1990; 50:191–200 [View Article]
    [Google Scholar]
  41. Bond G, Scott GD. An examination of some symbiotic systems for fixation of nitrogen. Ann Bot 1955; 19:67–77 [View Article]
    [Google Scholar]
  42. Meeks JC. Cyanobacterial-Bryophyte associations. In Rai A. editor CRC Handbook of Symbiotic Cyanobacteria Boca Raton, FL: CRC Press; 1990 pp 43–64
    [Google Scholar]
  43. Adams D, Bergman B, Nierzwicki-Bauer S, Duggan PS, Rai AN et al. Cyanobacterial-plant symbioses. In The prokaryotes: Prokaryotic biology and symbiotic aassociations 2013 pp 359–400
    [Google Scholar]
  44. Meeks JC, Elhai J. Regulation of cellular differentiation in filamentous cyanobacteria in free-living and plant-associated symbiotic growth states. Microbiol Mol Biol Rev 2002; 66:94–121 [View Article] [PubMed]
    [Google Scholar]
  45. Cohen MF, Meeks JC. A hormogonium regulating locus, hrmUA, of the cyanobacterium Nostoc punctiforme strain ATCC 29133 and its response to an extract of a symbiotic plant partner Anthoceros punctatus. Mol Plant-Microbe Interact 1997; 10:280–289 [View Article] [PubMed]
    [Google Scholar]
  46. Allen MB, Arnon DI. Studies on nitrogen-fixing blue-green algae. I. Growth and nitrogen fixation by Anabaena cylindrica Lemm. Plant Physiol 1955; 30:366–372 [View Article] [PubMed]
    [Google Scholar]
  47. Golden JW, Robinson SJ, Haselkorn R. Rearrangement of nitrogen fixation genes during heterocyst differentiation in the cyanobacterium Anabaena. Nature 1985; 314:419–423 [View Article] [PubMed]
    [Google Scholar]
  48. Golden SS, Brusslan J, R Haselkorn. Genetic engineering of the cyanobacterial chromosome. Methods Enzymol 1987; 153:215–231
    [Google Scholar]
  49. Antonopoulos DA, Assaf R, Aziz RK, Brettin T, Bun C et al. PATRIC as a unique resource for studying antimicrobial resistance. Brief Bioinform 2019; 20:1094–1102 [View Article] [PubMed]
    [Google Scholar]
  50. Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads. PLOS Comput Biol 2017; 13:e1005595 [View Article] [PubMed]
    [Google Scholar]
  51. Brettin T, Davis JJ, Disz T, Edwards RA, Gerdes S et al. RASTTK: A modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci Rep 2015; 5:8365 [View Article] [PubMed]
    [Google Scholar]
  52. Davis JJ, Gerdes S, Olsen GJ, Olson R, Pusch GD et al. PATTYFAMS: Protein families for the microbial genomes in the PATRIC database. Front Microbiol 2016; 7:118 [View Article] [PubMed]
    [Google Scholar]
  53. Edgar RC. Muscle: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 2004; 5:113 [View Article]
    [Google Scholar]
  54. Cock PJA, Antao T, Chang JT, Chapman BA, Cox CJ et al. Biopython: Freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics 2009; 25:1422–1423 [View Article] [PubMed]
    [Google Scholar]
  55. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014; 30:1312–1313 [View Article] [PubMed]
    [Google Scholar]
  56. Gouy M, Guindon S, Gascuel O. SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol 2010; 27:221–224 [View Article]
    [Google Scholar]
  57. Yoon S-H, Ha S-M, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie Van Leeuwenhoek 2017; 110:1281–1286 [View Article] [PubMed]
    [Google Scholar]
  58. Ondov BD, Treangen TJ, Melsted P, Mallonee AB, Bergman NH et al. MASH: Fast genome and metagenome distance estimation using minhash. Genome Biol 2016; 17:132 [View Article] [PubMed]
    [Google Scholar]
  59. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990; 215:403–410 [View Article] [PubMed]
    [Google Scholar]
  60. Cove DJ, Perroud P-F, Charron AJ, McDaniel SF, Khandelwal A et al. Culturing the moss Physcomitrella patens. Cold Spring Harbor Protocols 2009; 2009:pdb.prot5136 [View Article]
    [Google Scholar]
  61. Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier RY. Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 1979; 111:1–61
    [Google Scholar]
  62. Currier TC, Wolk CP. Characteristics of Anabaena variabilis influencing plaque formation by cyanophage N-1. J Bacteriol 1979; 139:88–92 [View Article] [PubMed]
    [Google Scholar]
  63. Mardanov AV, Beletskii AV, Gumerov VM, Karbysheva EA, Mikheeva LE. New low-copy plasmid in cyanobacterium Anabaena variabilis. Russ J Genet 2013; 49:798–805 [View Article]
    [Google Scholar]
  64. Ungerer JL, Pratte BS, Thiel T. RNA processing of nitrogenase transcripts in the cyanobacterium Anabaena variabilis. J Bacteriol 2010; 192:3311–3320 [View Article] [PubMed]
    [Google Scholar]
  65. Pratte BS, Ungerer J, Thiel T. Role of RNA secondary structure and processing in stability of the nifH1 transcript in the cyanobacterium Anabaena Variabilis. J Bacteriol 2015; 197:1408–1422
    [Google Scholar]
  66. Thiel T. Organization and regulation of cyanobacterial nif gene clusters: implications for nitrogenase expression in plant cells. FEMS Microbiol Lett 2019; 366: [View Article] [PubMed]
    [Google Scholar]
  67. Potts M, Angeloni SV, Ebel RE, Bassam D. Myoglobin in a cyanobacterium. Science 1992; 256:1690–1692 [View Article] [PubMed]
    [Google Scholar]
  68. Hill DR, Belbin TJ, Thorsteinsson MV, Bassam D, Brass S et al. GlbN (cyanoglobin) is a peripheral membrane protein that is restricted to certain Nostoc spp. J Bacteriol 1996; 178:6587–6598 [View Article] [PubMed]
    [Google Scholar]
  69. Hilton JA, Meeks JC, Zehr JP. Surveying DNA elements within functional genes of heterocyst-forming cyanobacteria. PLoS One 2016; 11:e0156034 [View Article] [PubMed]
    [Google Scholar]
  70. Lammers PJ, Golden JW, Haselkorn R. Identification and sequence of a gene required for a developmentally regulated DNA excision in Anabaena. Cell 1986; 44:905–911 [View Article] [PubMed]
    [Google Scholar]
  71. Golden JW, Mulligan ME, Haselkorn R. Different recombination site specificity of two developmentally regulated genome rearrangements. Nature 1987; 327:526–529 [View Article] [PubMed]
    [Google Scholar]
  72. Golden JW, Carrasco CD, Mulligan ME, Schneider GJ, Haselkorn R. Deletion of a 55-kilobase-pair DNA element from the chromosome during heterocyst differentiation of Anabaena sp. strain PCC 7120. J Bacteriol 1988; 170:5034–5041 [View Article] [PubMed]
    [Google Scholar]
  73. Golden JW, Mulligan ME, Haselkorn R. Different recombination site specificity of two developmentally regulated genome rearrangements. Nature 1987; 327:526–529 [View Article] [PubMed]
    [Google Scholar]
  74. Carrasco CD, Buettner JA, Golden JW. Programmed DNA rearrangement of a cyanobacterial hupL gene in heterocysts. Proc Natl Acad Sci USA 1995; 92:791–795 [View Article] [PubMed]
    [Google Scholar]
  75. Thiel T, Lyons EM, Erker JC, Ernst A. A second nitrogenase in vegetative cells of a heterocyst-forming cyanobacterium. Proc Natl Acad Sci USA 1995; 92:9358–9362 [View Article] [PubMed]
    [Google Scholar]
  76. Vernon SA, Pratte BS, Thiel T. Role of the nifB1 and nifB2 Promoters in cell-type-specific expression of two Mo nitrogenases in the cyanobacterium Anabaena variabilis ATCC 29413. J Bacteriol 2017; 199: [View Article] [PubMed]
    [Google Scholar]
  77. Valladares A, Herrero A, Pils D, Schmetterer G, Flores E. Cytochrome c oxidase genes required for nitrogenase activity and diazotrophic growth in Anabaena sp. PCC 7120. Mol Microbiol 2003; 47:1239–1249 [View Article] [PubMed]
    [Google Scholar]
  78. Thiel T. Characterization of genes for an alternative nitrogenase in the cyanobacterium Anabaena variabilis. J Bacteriol 1993; 175:6276–6286 [View Article] [PubMed]
    [Google Scholar]
  79. Pratte BS, Sheridan R, James JA, Thiel T. Regulation of V-nitrogenase genes in Anabaena variabilis by RNA processing and by dual repressors. Mol Microbiol 2013; 88:413–424 [View Article] [PubMed]
    [Google Scholar]
  80. Darnajoux R, Zhang X, McRose DL, Miadlikowska J, Lutzoni F et al. Biological nitrogen fixation by alternative nitrogenases in boreal cyanolichens: Importance of molybdenum availability and implications for current biological nitrogen fixation estimates. New Phytologist 2016
    [Google Scholar]
  81. Darnajoux R, Magain N, Renaudin M, Lutzoni F, Bellenger J-P et al. Molybdenum threshold for ecosystem scale alternative vanadium nitrogenase activity in boreal forests. Proc Natl Acad Sci USA 2019; 116:24682–24688 [View Article]
    [Google Scholar]
  82. Pratte BS, Thiel T. High-affinity vanadate transport system in the cyanobacterium Anabaena variabilis ATCC 29413. J Bacteriol 2006; 188:464–468 [View Article] [PubMed]
    [Google Scholar]
  83. Thiel T, Pratte B. Regulation of three nitrogenase gene clusters in the cyanobacterium Anabaena variabilis ATCC 29413. Life 2014; 4:944–967 [View Article] [PubMed]
    [Google Scholar]
  84. Kumar K, Ota M, Taton A, Golden JW. Excision of the 59-kb fdxN DNA element is required for transcription of the nifD gene in Anabaena PCC 7120 heterocysts. N Z J Bot 2018; 57:76–92 [View Article]
    [Google Scholar]
  85. Pratte BS, Eplin K, Thiel T. Cross-functionality of nitrogenase components NifH1 and VnfH in Anabaena variabilis. J Bacteriol 2006; 188:5806–5811 [View Article] [PubMed]
    [Google Scholar]
  86. Ekman M, Picossi S, Campbell EL, Meeks JC, Flores E. A Nostoc punctiforme sugar transporter necessary to establish a cyanobacterium-plant symbiosis. Plant Physiol 2013; 161:1984–1992 [View Article] [PubMed]
    [Google Scholar]
  87. Ungerer JL, Pratte BS, Thiel T. Regulation of fructose transport and its effect on fructose toxicity in Anabaena spp. J Bacteriol 2008; 190:8115–8125 [View Article] [PubMed]
    [Google Scholar]
  88. Campbell EL, Wong FC, Meeks JC. DNA binding properties of the HrmR protein of Nostoc punctiforme responsible for transcriptional regulation of genes involved in the differentiation of hormogonia. Mol Microbiol 2003; 47:573–582 [View Article] [PubMed]
    [Google Scholar]
  89. Wuichet K, Zhulin IB. Molecular evolution of sensory domains in cyanobacterial chemoreceptors. Trends Microbiol 2003; 11:200–203 [View Article] [PubMed]
    [Google Scholar]
  90. Campbell EL, Hagen KD, Chen R, Risser DD, Ferreira DP et al. Genetic analysis reveals the identity of the photoreceptor for phototaxis in hormogonium filaments of Nostoc punctiforme. J Bacteriol 2015; 197:782–791 [View Article] [PubMed]
    [Google Scholar]
  91. Risser DD, Meeks JC. Comparative transcriptomics with a motility-deficient mutant leads to identification of a novel polysaccharide secretion system in Nostoc punctiforme. Mol Microbiol, Comparative Study Research Support, US Gov’t, Non-PHS 2013; 87:884–893
    [Google Scholar]
  92. Risser DD, Chew WG, Meeks JC. Genetic characterization of the hmp locus, a chemotaxis-like gene cluster that regulates hormogonium development and motility in Nostoc punctiforme. Mol Microbiol 2014; 92:222–233 [View Article] [PubMed]
    [Google Scholar]
  93. Khayatan B, Meeks JC, Risser DD. Evidence that a modified type IV pilus-like system powers gliding motility and polysaccharide secretion in filamentous cyanobacteria. Mol Microbiol 2015; 98:1021–1036 [View Article] [PubMed]
    [Google Scholar]
  94. Bhaya D, Bianco NR, Bryant D, Grossman A. Type IV pilus biogenesis and motility in the cyanobacterium Synechocystis sp. Mol Microbiol 2000; 37:941–951 [View Article] [PubMed]
    [Google Scholar]
  95. Duggan PS, Gottardello P, Adams DG. Molecular analysis of genes in Nostoc punctiforme involved in pilus biogenesis and plant infection. J Bacteriol 2007; 189:4547–4551 [View Article] [PubMed]
    [Google Scholar]
  96. Johansson C, Bergman B. Reconstitution of the symbiosis of Gunnera manicata Linden: cyanobacterial specificity. New Phytol 1994; 126:643–652 [View Article]
    [Google Scholar]
  97. Becking JH. n.d Ecology and physiological adaptations of Anabaena in the Azolla-Anabaena azollae symbiosis. Ecological Bulletins 1978:266–281
    [Google Scholar]
  98. Splitt SD, Risser DD. The non-metabolizable sucrose analog sucralose is a potent inhibitor of hormogonium differentiation in the filamentous cyanobacterium Nostoc punctiforme. Arch Microbiol 2016; 198:137–147 [View Article] [PubMed]
    [Google Scholar]
  99. Liaimer A, Jenke-Kodama H, Ishida K, Hinrichs K, Stangeland J et al. A polyketide interferes with cellular differentiation in the symbiotic cyanobacterium Nostoc punctiforme. Environ Microbiol Rep 2011; 3:550–558 [View Article] [PubMed]
    [Google Scholar]
  100. Thiel T. Nitrogen fixation in heterocyst-forming cyanobacteria. In Klipp W, Masepohl B, Gallon J, Newton W. (editors) Genetics and Regulation of Nitrogen Fixing Bacteria Dordrecht, The Netherlands: Kluwer Academic Publishers; 2004 pp 73–110
    [Google Scholar]
  101. Komárek J, Anagnostidis K. Modern approach to the classification system of Cyanophytes 4 - Nostocales. Algological Studies/Archiv fu r Hydrobiologie, Supplement Volumes 1989; 56:247–345
    [Google Scholar]
  102. Will SE, Henke P, Boedeker C, Huang S, Brinkmann H et al. Day and night: Metabolic profiles and evolutionary relationships of six axenic non-marine cyanobacteria. Genome Biol Evol 2019; 11:270–294 [View Article] [PubMed]
    [Google Scholar]
  103. Qiao Q, Huang Y, Qi J, Qu M, Jiang C et al. The genome and transcriptome of Trichormus sp. NMC-1: Insights into adaptation to extreme environments on the Qinghai-Tibet plateau. Sci Rep 2016; 6:29404 [View Article] [PubMed]
    [Google Scholar]
  104. Peters GA, Mayne BC. The Azolla, Anabaena azollae relationship: I. Initial characterization of the association. Plant Physiol 1974; 53:813–819 [View Article] [PubMed]
    [Google Scholar]
  105. Meeks JC, Enderlin CS, Joseph CM, Chapman JS, Lollar MW. Fixation of [(13)N]N2 and transfer of fixed nitrogen in the Anthoceros-Nostoc symbiotic association. Planta 1985; 164:406–414 [View Article] [PubMed]
    [Google Scholar]
  106. Enderlin CS, Meeks JC. Pure culture and reconstitution of the Anthoceros-Nostoc symbiotic association. Planta 1983; 158:157–165 [View Article] [PubMed]
    [Google Scholar]
  107. Braun-Howland EB, Lindblad P, Nierzwicki-Bauer SA, Bergman B. Dinitrogenase reductase of nitrogenase in the cyanobacterial symbionts of three Azolla species: localization and sequence of appearance during heterocyst differentiation. Planta 1988; 176:319–332 [View Article] [PubMed]
    [Google Scholar]
  108. Ekman M, Tollback P, Bergman B. Proteomic analysis of the cyanobacterium of the Azolla symbiosis: identity, adaptation, and NifH modification. J Exp Bot 2008; 59:1023–1034 [View Article] [PubMed]
    [Google Scholar]
  109. Osanai T, Kanesaki Y, Nakano T, Takahashi H, Asayama M et al. Positive regulation of sugar catabolic pathways in the cyanobacterium Synechocystis sp. PCC 6803 by the group 2 sigma factor Sige. J Biol Chem 2005; 280:30653–30659 [View Article] [PubMed]
    [Google Scholar]
  110. Osanai T, Imamura S, Asayama M, Shirai M, Suzuki I et al. Nitrogen induction of sugar catabolic gene expression in Synechocystis sp. PCC 6803. DNA Res 2006; 13:185–195 [View Article] [PubMed]
    [Google Scholar]
  111. Nieves-Morión M, Flores E. Multiple ABC glucoside transporters mediate sugar-stimulated growth in the heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120. Environ Microbiol Rep 2018; 10:40–48 [View Article] [PubMed]
    [Google Scholar]
  112. Nelson JM, Hauser DA, Gudiño JA, Guadalupe YA, Meeks JC et al. Complete genomes of symbiotic cyanobacteria clarify the evolution of vanadium-nitrogenase. Genome Biol Evol 2019; 11:1959–1964 [View Article] [PubMed]
    [Google Scholar]
  113. Campbell EL, Meeks JC. Characteristics of hormogonia formation by symbiotic Nostoc spp. in response to the presence of Anthoceros punctatus or Its extracellular products. Appl Environ Microbiol 1989; 55:125–131 [View Article] [PubMed]
    [Google Scholar]
  114. Risser DD, Meeks JC. Comparative transcriptomics with a motility-deficient mutant leads to identification of a novel polysaccharide secretion system in Nostoc punctiforme. Mol Microbiol 2013; 87:884–893 [View Article] [PubMed]
    [Google Scholar]
  115. Campbell EL, Hagen KD, Cohen MF, Summers ML, Meeks JC. The devR gene product is characteristic of receivers of two-component regulatory systems and is essential for heterocyst development in the filamentous cyanobacterium Nostoc sp. strain ATCC 29133. J Bacteriol 1996; 178:2037–2043 [View Article] [PubMed]
    [Google Scholar]
  116. Castenholz RW, Wilmotte A, Herdman M, Rippka R, Waterbury JB et al. Phylum BX. Cyanobacteria. Boone D, Castenholz R, Garrity G. eds In Bergey’s Manual® of Systematic Bacteriology: Volume One: The Archaea and the Deeply Branching and Phototrophic Bacteria New York: Springer; 2001 pp 473–599
    [Google Scholar]
  117. Rajaniemi P, Hrouzek P, Kastovska K, Willame R, Rantala A et al. Phylogenetic and morphological evaluation of the genera Anabaena, Aphanizomenon, Trichormus and Nostoc (Nostocales, Cyanobacteria). Int J Syst Evol Microbiol 2005; 55:11–26 [View Article] [PubMed]
    [Google Scholar]
  118. Arad H, Keysari A, Tel-or E, Kobiler D. A comparison between cell antigens in different isolates of Anabaena azollae. Symbiosis 1985; 1:195–203
    [Google Scholar]
  119. Thiel T, Pratte BS, Zhong J, Goodwin L, Copeland A et al. Complete genome sequence of Anabaena variabilis ATCC 29413. Stand Genomic Sci 2014; 9:562–573 [View Article]
    [Google Scholar]
  120. Meeks JC, Elhai J, Thiel T, Potts M, Larimer F et al. An overview of the genome of Nostoc punctiforme, a multicellular, symbiotic cyanobacterium. Photosynth Res 2001; 70:85–106 [View Article]
    [Google Scholar]
  121. Dvornyk V, Nevo E. Evidence for multiple lateral transfers of the circadian clock cluster in filamentous heterocystic cyanobacteria Nostocaceae. J Mol Evol 2004; 58:341–347 [View Article] [PubMed]
    [Google Scholar]
  122. Dvornyk V, Nevo E. Genetic polymorphism of cyanobacteria under permanent natural stress: A lesson from the "Evolution Canyons". Res Microbiol 2003; 154:79–84 [View Article] [PubMed]
    [Google Scholar]
  123. Seo P-. S, Yokota A. The phylogenetic relationships of cyanobacteria inferred from 16S rRNA, gyrB, rpoC1 and rpoD1 gene sequences. J Gen Appl Microbiol 2003; 49:191–203 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000595
Loading
/content/journal/mgen/10.1099/mgen.0.000595
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error