1887

Abstract

Human pathogens belonging to the genus, in the family, are transmitted primarily by mosquitoes. The signs and symptoms associated with these viruses include fever and polyarthralgia, defined as joint pain and inflammation, as well as encephalitis. In the last decade, our understanding of the interactions between members of the alphavirus genus and the human host has increased due to the re-appearance of the chikungunya virus (CHIKV) in Asia and Europe, as well as its emergence in the Americas. Alphaviruses affect host immunity through cytokines and the interferon response. Understanding alphavirus interactions with both the innate immune system as well as the various cells in the adaptive immune systems is critical to developing effective therapeutics. In this review, we summarize the latest research on alphavirus-host cell interactions, underlying infection mechanisms, and possible treatments.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.001644
2021-08-26
2024-04-24
Loading full text...

Full text loading...

References

  1. Fields BN, Knipe DM, Howley PM. Table 31.1. In Fields’ virology Philadelphia, USA: Lippincott Williams & wilkins; 2007
    [Google Scholar]
  2. Strauss JH. The alphaviruses: gene expression, replication, and evolution. Microbiol Rev 1994; 58:491–562 [View Article] [PubMed]
    [Google Scholar]
  3. Barrett AD, Weaver SC. Arboviruses: Alphaviruses, flaviviruses and bunyaviruses: Encephalitis; yellow fever; dengue; haemorrhagic fever; miscellaneous tropical fevers; undifferentiated fever. In Medical Microbiology pp 520–536
    [Google Scholar]
  4. Kubes V, Rios FA. The causative agent of infectious equine encephalomyelitis in venezuela. Science 1939; 90:20–21 [View Article]
    [Google Scholar]
  5. Chen W, Foo SS, Sims NA, Herrero LJ, Walsh NC. Arthritogenic alphaviruses: New insights into arthritis and bone pathology. Trends Microbiol 2015; 23:35–43 [View Article] [PubMed]
    [Google Scholar]
  6. Griffin DE. Recovery from viral encephalomyelitis: Immune-mediated noncytolytic virus clearance from neurons. Immunol Res 2010; 47:123–133 [View Article] [PubMed]
    [Google Scholar]
  7. Cerny T, Schwarz M, Schwarz U, Lemant J, Gérardin P. The range of neurological complications in chikungunya fever. Neurocrit Care 2017; 27:447–457 [View Article] [PubMed]
    [Google Scholar]
  8. Paredes A, Weaver S, Watowich S, Chiu W. Structural biology of old world and new world alphaviruses. Arch Virol Suppl 2005179–185 [View Article] [PubMed]
    [Google Scholar]
  9. Kim DY, Reynaud JM, Rasalouskaya A, Akhrymuk I, Mobley JA. New World and Old World Alphaviruses Have Evolved to Exploit Different Components of Stress Granules, FXR and G3BP Proteins, for Assembly of Viral Replication Complexes. PLoS Pathog 2016; 12:e1005810 [View Article] [PubMed]
    [Google Scholar]
  10. Dhama K, Kapoor S, Pawarya RVS, Chakraborty S, Tiwari R. Ross river virus (RRV) infection in horses and humans: A review. Pak J Biol Sci 2014; 17:768–779 [View Article] [PubMed]
    [Google Scholar]
  11. Forshey BM, Guevara C, Laguna-Torres VA, Cespedes M, Vargas J et al. Arboviral etiologies of acute febrile illnesses in western south America, 2000-2007. PLoS Negl Trop Dis 2010; 4:2000–2007
    [Google Scholar]
  12. Garmashova N, Gorchakov R, Volkova E, Paessler S, Frolova E. The Old World and New World Alphaviruses Use Different Virus-Specific Proteins for Induction of Transcriptional Shutoff. J Virol 2007; 81:2472–2484 [View Article] [PubMed]
    [Google Scholar]
  13. Brown DT, Waite MR, Pfefferkorn ER. Morphology and morphogenesis of Sindbis virus as seen with freeze-etching techniques. J Virol 1972; 10:524–536 [View Article] [PubMed]
    [Google Scholar]
  14. Sourisseau M, Schilte C, Casartelli N, Trouillet C, Guivel-Benhassine F et al. Characterization of reemerging chikungunya virus. PLoS Pathog 2007; 3:0804–0817
    [Google Scholar]
  15. Couderc T, Lecuit M. Focus on Chikungunya pathophysiology in human and animal models. Microbes Infect 2009; 11:1197–1205 [View Article] [PubMed]
    [Google Scholar]
  16. Subak-Sharpe I, Dyson H, Fazakerley J. In vivo depletion of CD8+ T cells prevents lesions of demyelination in Semliki Forest virus infection. J Virol 1993; 67:7629–7633 [View Article] [PubMed]
    [Google Scholar]
  17. Lindsey NP, Staples JE, Fischer M. Eastern equine encephalitis virus in the United States, 2003–2016. Am J Trop Med Hyg 2018; 98:1472–1477 [View Article] [PubMed]
    [Google Scholar]
  18. Gauri LA, Ranwa BL, Nagar K, Vyas A, Fatima Q. Post chikungunya Brain stem encephalitis. J Assoc Physicians India 2012; 60:68–69 [PubMed]
    [Google Scholar]
  19. Zhang R, Hryc CF, Cong Y, Liu X, Jakana J. 4.4 Å cryo-EM structure of an enveloped alphavirus Venezuelan equine encephalitis virus. EMBO J 2011; 30:3854–3863 [View Article] [PubMed]
    [Google Scholar]
  20. Thangamani S, Higgs ST, Ziegler SA, Vanlandingham DL, Tesh RB et al. Host immune response to mosquito-transmitted chikungunya virus differs from that elicited by needle inoculated virus. PLoS One 2010; 5:12137 [View Article]
    [Google Scholar]
  21. Pingen M, Bryden SR, Pondeville E, Schnettler E, Kohl A et al. Host Inflammatory Response to Mosquito Bites Enhances the Severity of Arbovirus Infection. Immunity 2016; 44:1455–1469 [View Article] [PubMed]
    [Google Scholar]
  22. Frolov I, Akhrymuk M, Akhrymuk I, Atasheva S, Frolova EI. Early events in alphavirus replication determine the outcome of infection. J Virol 2012; 86:5055–5066 [View Article] [PubMed]
    [Google Scholar]
  23. Lambert AJ, Martin DA, Lanciotti RS. Detection of North American eastern and western equine encephalitis viruses by nucleic acid amplification assays. J Clin Microbiol 2003; 41:379–385 [View Article] [PubMed]
    [Google Scholar]
  24. Arias-Goeta C, Mousson L, Rougeon F, Failloux AB. Dissemination and transmission of the E1-226V variant of chikungunya virus in aedes albopictus are controlled at the midgut barrier level. PLoS One 2013; 8:e57548 [View Article] [PubMed]
    [Google Scholar]
  25. Mejía CR, López-Vélez R. Tropical arthritogenic alphaviruses. Reumatol Clin (Engl Ed) 2018; 14:97–105 [View Article] [PubMed]
    [Google Scholar]
  26. Simon F, Parola P, Grandadam M, Fourcade S, Oliver M. Chikungunya infection: An emerging rheumatism among travelers returned from Indian Ocean islands. Report of 47 cases. Medicine (Baltimore) 2007; 86:123–137 [View Article] [PubMed]
    [Google Scholar]
  27. Franssila R, Hedman K. Viral causes of arthritis. Best Practice & Research Clinical Rheumatology 2006; 20:1139–1157 [View Article]
    [Google Scholar]
  28. Theilacker C, Held J, Allering L, Emmerich P, Schmidt-Chanasit J. Prolonged polyarthralgia in a German traveller with Mayaro virus infection without inflammatory correlates. BMC Infect Dis 2013; 13:369 [View Article] [PubMed]
    [Google Scholar]
  29. Sebastian MR, Lodha R, Kabra SK. Chikungunya infection in children. Indian J Pediatr 2009; 76:185–189 [View Article] [PubMed]
    [Google Scholar]
  30. K.M. H, J.J.H. C. Insights into the interplay between chikungunya virus and its human host. Future Virol 2011; 6:1211–1223
    [Google Scholar]
  31. Taylor RM. Sindbis virus: a newly recognized arthropod-transmitted virus. Am J Trop Med Hyg 1955; 4:844–862 [View Article] [PubMed]
    [Google Scholar]
  32. Malherbe MH, Strickland-Cholmley ALJ. Sindbis virus infection in man. South African Med J 1963547–552
    [Google Scholar]
  33. Laine M, Luukkainen R, Jalava J, Ilonen J, Kuusisto P et al. Prolonged arthritis associated with sindbis-related (POGOSTA) virus infection. Rheumatology (Oxford) 2002; 41:829–830 [View Article] [PubMed]
    [Google Scholar]
  34. Dubuisson J, Rice CM. Sindbis virus attachment: isolation and characterization of mutants with impaired binding to vertebrate cells. J Virol 1993; 67:3363–3374 [View Article] [PubMed]
    [Google Scholar]
  35. Rulli NE, Melton J, Wilmes A, Ewart G, Mahalingam S. The molecular and cellular aspects of arthritis due to alphavirus infections: Lesson learned from Ross River virus. Ann N Y Acad Sci 2007; 1102:96–108 [View Article] [PubMed]
    [Google Scholar]
  36. Sammels LM, Lindsay MD, Poidinger M, Coelent RJ, Mackenzie JS. Geographic distribution and evolution of Sindbis virus in Australia. J Gen Virol 1999; 80:739–748 [View Article] [PubMed]
    [Google Scholar]
  37. Jöst H, Bialonski A, Storch V, Günther S, Becker N. Isolation and phylogenetic analysis of sindbis viruses from mosquitoes in Germany. J Clin Microbiol 2010; 48:1900–1903 [View Article] [PubMed]
    [Google Scholar]
  38. Karpf AR, Brown DT. Comparison of Sindbis virus-induced pathology in mosquito and vertebrate cell cultures. Virology 1998; 240:193–201 [View Article] [PubMed]
    [Google Scholar]
  39. Griffin DE, Johnson RT. Cellular immune response to viral infection: In vitro studies of lymphocytes from mice infected with Sindbis virus. Cell Immunol 1973; 9:426–434 [View Article] [PubMed]
    [Google Scholar]
  40. Assunção-Miranda I, Bozza MT, Da Poian AT. Pro-inflammatory response resulting from sindbis virus infection of human macrophages: Implications for the pathogenesis of viral arthritis. J Med Virol 2010; 82:164–174 [View Article] [PubMed]
    [Google Scholar]
  41. Macfarlan RI, Burns WH, White DO. Two cytotoxic cells in peritoneal cavity of virus infected mice: Antibody dependent macrophages and nonspecific killer cells. J Immunol 1977; 119:1569–1574 [PubMed]
    [Google Scholar]
  42. Hirsch RL. Natural killer cells appear to play no role in the recovery of mice from Sindbis virus infection. Immunology 1981; 43:81–89 [PubMed]
    [Google Scholar]
  43. Marsh M. The entry of enveloped viruses into cells by endocytosis. Biochem J 1984; 218:1–10 [View Article] [PubMed]
    [Google Scholar]
  44. DeTulleo L, Kirchhausen T. The clathrin endocytic pathway in viral infection. EMBO J 1998; 17:4585–4593 [View Article] [PubMed]
    [Google Scholar]
  45. Smit JM, Bittman R, Wilschut J. Low-pH-dependent fusion of Sindbis virus with receptor-free cholesterol- and sphingolipid-containing liposomes. J Virol 1999; 73:8476–8484 [View Article] [PubMed]
    [Google Scholar]
  46. Lozach PY, Burleigh L, Staropoli I, Amara A. The C type lectins DC-SIGN and L-SIGN: Receptors for viral glycoproteins. In Methods in Molecular Biology Vol 379 2007 pp 51–68 [View Article] [PubMed]
    [Google Scholar]
  47. Byrnes AP, Griffin DE. Binding of Sindbis virus to cell surface heparan sulfate. J Virol 1998; 72:7349–7356 [View Article] [PubMed]
    [Google Scholar]
  48. Rose PP, Hanna SL, Spiridigliozzi A, Wannissorn N, Beiting DP. Natural resistance-associated macrophage protein is a cellular receptor for Sindbis virus in both insect and mammalian hosts. Cell Host Microbe 2011; 10:97–104 [View Article] [PubMed]
    [Google Scholar]
  49. Stiles KM, Kielian M. Alphavirus entry: NRAMP leads the way. Cell Host Microbe 2011; 10:92–93 [View Article] [PubMed]
    [Google Scholar]
  50. Assuncao-Miranda I, Cruz-Oliveira C, Da Poian AT. Molecular mechanisms involved in the pathogenesis of alphavirus-induced arthritis. Biomed Res Int 2013; 2013:973516 [View Article] [PubMed]
    [Google Scholar]
  51. Fraser JRE. Epidemic polyarthritis and Ross River virus disease. Clin Rheum Dis 1986; 12:369–388 [PubMed]
    [Google Scholar]
  52. Rowell JF, Griffin DE. The inflammatory response to nonfatal Sindbis virus infection of the nervous system is more severe in SJL than in BALB/c mice and is associated with low levels of IL-4 mRNA and high levels of IL-10-producing CD4+ T cells. J Immunol 1999; 162:1624–1632 [PubMed]
    [Google Scholar]
  53. Burdeinick-Kerr R, Wind J, Griffin DE. Synergistic roles of antibody and interferon in noncytolytic clearance of sindbis virus from different regions of the central nervous system. J Virol 2007; 81:5628–5636 [View Article] [PubMed]
    [Google Scholar]
  54. Binder GK, Griffin DE. Interferon-γ-mediated site-specific clearance of alphavirus from CNS neurons. Science (80-) 2001; 293:303–306 [View Article]
    [Google Scholar]
  55. Liang XH, Kleeman LK, Jiang HH, Gordon G, Goldman JE. Protection against fatal sindbis virus encephalitis by beclin, a novel Bcl-2-interacting protein. J Virol 1998; 72:8586–8596 [View Article] [PubMed]
    [Google Scholar]
  56. Tucker PC, Griffin DE, Choi S, Bui N, Wesselingh S. Inhibition of nitric oxide synthesis increases mortality in Sindbis virus encephalitis. J Virol 1996; 70:3972–3977 [View Article] [PubMed]
    [Google Scholar]
  57. Smithburn KC, Haddow AJ. Semliki forest virus: I. isolation and pathogenic properties. J Immunol 1944; 49:141–157
    [Google Scholar]
  58. Nuckols JT, Ziegler SA, Huang Y-J, McAuley AJ, Vanlandingham DL. Infection of Aedes albopictus with Chikungunya Virus Rectally Administered by Enema. Vector Borne Zoonotic Dis 2013; 13:103–110 [View Article] [PubMed]
    [Google Scholar]
  59. Diallo D, Dia I, Diagne CT, Gaye A, Diallo M. Emergences of Chikungunya and Zika in Africa Elsevier Inc; 2018 [View Article]
    [Google Scholar]
  60. Bautista-Reyes E, Núñez-Avellaneda D, Alonso-Palomares LA, Salazar MI. Chikungunya: Molecular aspects, clinical outcomes and pathogenesis. Rev Invest Clin 2017; 69:299–307 [View Article] [PubMed]
    [Google Scholar]
  61. Powers AM, Brault AC, Tesh RB, Weaver SC. Re-emergence of chikungunya and o’nyong-nyong viruses: evidence for distinct geographical lineages and distant evolutionary relationships. J Gen Virol 2000; 81:471–479 [View Article] [PubMed]
    [Google Scholar]
  62. Arredondo-Garcia J, Mendez-Herrera A, Medina-Cortina H. Arbovirus en Latinoamérica. Acta Pediatr Mex 2016; 37:111–131 [View Article]
    [Google Scholar]
  63. Gérardin P, Couderc T, Bintner M, Tournebize P, Renouil M et al. Chikungunya virus–associated encephalitis. Neurology 2016; 86:LP–102
    [Google Scholar]
  64. Dupuis-Maguiraga L, Noret M, Brun S, Le Grand R, Gras G. Chikungunya disease: Infection-associated markers from the acute to the chronic phase of arbovirus-induced arthralgia. PLoS Negl Trop Dis 2012; 6:e1446 [View Article] [PubMed]
    [Google Scholar]
  65. Thiberville SD, Moyen N, Dupuis-Maguiraga L, Nougairede A, Gould EA. Chikungunya fever: Epidemiology, clinical syndrome, pathogenesis and therapy. Antiviral Res 2013; 99:345–370 [View Article] [PubMed]
    [Google Scholar]
  66. Burt FJ, Chen W, Miner JJ, Lenschow DJ, Merits A. Chikungunya virus: an update on the biology and pathogenesis of this emerging pathogen. Lancet Infect Dis 2017; 17:e107–e117 [View Article] [PubMed]
    [Google Scholar]
  67. Hoarau JJ, Jaffar Bandjee MC, Krejbich Trotot P, Das T, Li-Pat-Yuen G. Persistent chronic inflammation and infection by chikungunya arthritogenic alphavirus in spite of a robust host immune response. J Immunol 2010; 184:5914–5927 [View Article] [PubMed]
    [Google Scholar]
  68. Borgherini G, Poubeau P, Staikowsky F, Lory M, Le Moullec N. Outbreak of Chikungunya on reunion island: early clinical and laboratory features in 157 adult patients. Clin Infect Dis 2007; 44:1401–1407 [View Article] [PubMed]
    [Google Scholar]
  69. Borgherini G, Poubeau P, Jossaume A, Gouix A, Cotte L. Persistent arthralgia associated with chikungunya virus: a study of 88 adult patients on reunion island. Clin Infect Dis 2008; 47:469–475 [View Article] [PubMed]
    [Google Scholar]
  70. Kuan G, Ramirez S, Gresh L, Ojeda S, Melendez M. Seroprevalence of anti-chikungunya virus antibodies in children and adults in Managua, Nicaragua, after the first chikungunya epidemic, 2014-2015. PLoS Negl Trop Dis 2016; 10:e0004773 [View Article] [PubMed]
    [Google Scholar]
  71. Weaver SC, Forrester NL. Chikungunya: Evolutionary history and recent epidemic spread. Antiviral Res 2015; 120:32–39 [View Article] [PubMed]
    [Google Scholar]
  72. Tan Y, Pickett BE, Shrivastava S, Gresh L, Balmaseda A. Differing epidemiological dynamics of Chikungunya virus in the Americas during the 2014-2015 epidemic. PLoS Negl Trop Dis 2018; 12:e0006670 [View Article] [PubMed]
    [Google Scholar]
  73. Lum F-M, Teo T-H, Lee WWL, Kam Y-W, Rénia L et al. An essential role of antibodies in the control of Chikungunya virus infection. J Immunol 2013; 190:6295–6302 [View Article] [PubMed]
    [Google Scholar]
  74. Messaoudi I, Vomaske J, Totonchy T, Kreklywich CN, Haberthur K. Chikungunya virus infection results in higher and persistent viral replication in aged rhesus macaques due to defects in anti-viral immunity. PLoS Negl Trop Dis 2013; 7:e2343 [View Article] [PubMed]
    [Google Scholar]
  75. Parola P, Lamballerie D, Jourdan J, Rovery C, Vaillant V. Novel chikungunya virus variant in travelers returning from Indian Ocean islands. Emerg Infect Dis 2006; 12:1493–1499 [View Article] [PubMed]
    [Google Scholar]
  76. Schneider BS, Soong L, Zeidner NS, Higgs S. Aedes aegypti salivary gland extracts modulate anti-viral and T H1/TH2 cytokine responses to sindbis virus infection. Viral Immunol 2004; 17:565–573 [View Article] [PubMed]
    [Google Scholar]
  77. Snell LM, Osokine I, Yamada DH, De la Fuente JR, Elsaesser HJ et al. Overcoming CD4 Th1 Cell Fate Restrictions to Sustain Antiviral CD8 T Cells and Control Persistent Virus Infection. Cell Rep 2016; 16:3286–3296 [View Article] [PubMed]
    [Google Scholar]
  78. Vazeille M, Moutailler S, Coudrier D, Rousseaux C, Khun H. Two Chikungunya isolates from the outbreak of La Reunion (Indian Ocean) exhibit different patterns of infection in the mosquito, Aedes albopictus. PLoS One 2007; 2:e1168 [View Article] [PubMed]
    [Google Scholar]
  79. Dubrulle M, Mousson L, Moutailier S, Vazeille M, Failloux AB. Chikungunya virus and Aedes mosquitoes: Saliva is infectious as soon as two days after oral infection. PLoS One 2009; 4:e5895 [View Article] [PubMed]
    [Google Scholar]
  80. Her Z, Malleret B, Chan M, Ong EKS, Wong S-C et al. Active infection of human blood monocytes by Chikungunya virus triggers an innate immune response. J Immunol 2010; 184:5903–5913 [View Article] [PubMed]
    [Google Scholar]
  81. Colavita F, Vita S, Lalle E, Carletti F, Bordi L. Overproduction of IL-6 and type-I IFN in a lethal case of Chikungunya virus infection in an elderly man during the 2017 Italian outbreak. Open Forum Infect Dis 2018; 5:ofy276 [View Article] [PubMed]
    [Google Scholar]
  82. Venugopalan A, Ghorpade RP, Chopra A. Cytokines in acute chikungunya. PLoS One 2014; 9:e111305 [View Article] [PubMed]
    [Google Scholar]
  83. Poo YS, Rudd PA, Gardner J, Wilson JAC, Larcher T. Multiple immune factors are involved in controlling acute and chronic chikungunya virus infection. PLoS Negl Trop Dis 2014; 8:e3354 [View Article] [PubMed]
    [Google Scholar]
  84. Fitzpatrick FA, Stringfellow DA. Virus and interferon effects on cellular prostaglandin biosynthesis. J Immunol 1980; 125:431–437 [PubMed]
    [Google Scholar]
  85. Atkins GJ, Sheahan BJ. Semliki forest virus neurovirulence mutants have altered cytopathogenesis for central nervous system cells. Infect Immun 1982; 36:333–341 [View Article] [PubMed]
    [Google Scholar]
  86. Sheahan BJ, Ibrahim M, Atkins GJ. Demyelination of olfactory pathways in mice following intranasal infection with the avirulent A7 strain of Semliki Forest virus. Eur J Vet Pathol 1996; 2:117–125
    [Google Scholar]
  87. Kaluza G, Lell G, Reinacher M, Stitz L, Willems WR. Neurogenic spread of Semliki forest virus in mice. Arch Virol 1987; 93:97–110 [View Article] [PubMed]
    [Google Scholar]
  88. Dropulić B, Masters CL. Entry of neurotropic arboviruses into the central nervous system: An in vitro study using mouse brain endothelium. J Infect Dis 1990; 161:685–691 [View Article] [PubMed]
    [Google Scholar]
  89. Fazakerley JK, Pathak S, Scallan M, Amor S, Dyson H. Replication of the a7(74) strain of semliki forest virus is restricted in neurons. Virology 1993; 195:627–637 [View Article] [PubMed]
    [Google Scholar]
  90. Morris MM, Dyson H, Baker D, Harbige LS, Fazakerley JK. Characterization of the cellular and cytokine response in the central nervous system following Semliki Forest virus infection. J Neuroimmunol 1997; 74:185–197 [View Article] [PubMed]
    [Google Scholar]
  91. Rosen L, Gubler DJ, Bennett PH. Epidemic polyarthritis (Ross River) virus infection in the Cook Islands. Am J Trop Med Hyg 1981; 30:1294–1302 [View Article] [PubMed]
    [Google Scholar]
  92. Tesh RB, Mclean RG, Shroyer DA. Ross River infection in american samoa. Trans R Soc Trop Med Hyg 1981; 75:426–431
    [Google Scholar]
  93. Aaskov JG, Mataika JU, Lawrence GW. An epidemic of Ross River virus infection in Fiji. Am J Trop Med Hyg 1981; 30:1053–1059 [View Article] [PubMed]
    [Google Scholar]
  94. Scrimgeour EM, Aaskov JG, Matz LR. Ross River virus arthritis in Papua New Guinea. Trans R Soc Trop Med Hyg 1987; 81:833–834 [View Article] [PubMed]
    [Google Scholar]
  95. Mylonas AD, Brown AM, Carthew TL, McGrath B, Purdie DM. Natural history of Ross River virus-induced epidemic polyarthritis. Med J Aust 2002; 177:356–360 [View Article] [PubMed]
    [Google Scholar]
  96. Suhrbier A, La LM. Clinical and pathologic aspects of arthritis due to Ross River virus and other alphaviruses. Curr Opin Rheumatol 2004; 16:374–379 [View Article] [PubMed]
    [Google Scholar]
  97. Suhrbier A, Jaffar-Bandjee MC, Gasque P. Arthritogenic alphaviruses-an overview. Nat Rev Rheumatol 2012; 8:420–429 [View Article] [PubMed]
    [Google Scholar]
  98. Herrero LJ, Sheng KC, Jian P, Taylor A, Her Z. Macrophage migration inhibitory factor receptor CD74 mediates alphavirus-induced arthritis and myositis in murine models of alphavirus infection. Arthritis Rheum 2013; 65:2724–2736 [View Article] [PubMed]
    [Google Scholar]
  99. Morrison TE, Whitmore AC, Shabman RS, Lidbury BA, Mahalingam S et al. Characterization of ross River virus tropism and virus-induced inflammation in a mouse model of viral arthritis and myositis. J Virol 2006; 80:737–749 [View Article] [PubMed]
    [Google Scholar]
  100. Morrison TE, Oko L, Montgomery SA, Whitmore AC, Lotstein AR. A Mouse model of chikungunya virus–induced musculoskeletal inflammatory disease. The American Journal of Pathology 2011; 178:32–40 [View Article]
    [Google Scholar]
  101. Burrack KS, Montgomery SA, Homann D, Morrison TE. CD8 + T cells control ross river virus infection in musculoskeletal tissues of infected mice. J Immunol 2015; 194:678–689 [View Article] [PubMed]
    [Google Scholar]
  102. Haist KC, Burrack KS, Davenport BJ, Morrison TE. Inflammatory monocytes mediate control of acute alphavirus infection in mice. PLoS Pathog 2017; 13:1–30
    [Google Scholar]
  103. Ozden S, Huerre M, Riviere J-P, Coffey LL, Afonso PV et al. Human muscle satellite cells as targets of Chikungunya virus infection. PLoS One 2007; 2:e527 [View Article] [PubMed]
    [Google Scholar]
  104. Linn ML, Aaskov JG, Suhrbier A. Antibody-dependent enhancement and persistence in macrophages of an arbovirus associated with arthritis. J Gen Virol 1996; 77 (Pt 3:407–411 [View Article] [PubMed]
    [Google Scholar]
  105. Mahalingam S, Lidbury BA. Suppression of lipolysaccharide-induced antiviral transcription factor (STAT-1 and NF-nB) complexes by antibody-dependent enhancement of macrophage infection by Ross River virus. Proc Natl Acad Sci U S A 2002; 99:13819–13824 [View Article] [PubMed]
    [Google Scholar]
  106. Mateo L, La Linn M, McColl SR, Cross S, Gardner J et al. An arthrogenic alphavirus induces monocyte chemoattractant protein-1 and interleukin-8. Intervirology 2000; 43:55–60 [View Article] [PubMed]
    [Google Scholar]
  107. Paessler S, Weaver SC. Vaccines for Venezuelan equine encephalitis. Vaccine 2009; 27:D80–5 [View Article] [PubMed]
    [Google Scholar]
  108. Vogel P, Kell WM, Fritz DL, Parker MD, Schoepp RJ. Early events in the pathogenesis of eastern equine encephalitis virus in mice. Am J Pathol 2005; 166:159–171 [View Article] [PubMed]
    [Google Scholar]
  109. Ten BG, Merrill MH. A serological difference between eastern and western equine encephalomyelitis virus. Experimental Biology and Medicine 1933; 31:217–220 [View Article]
    [Google Scholar]
  110. Zacks MA, Paessler S. Encephalitic alphaviruses. Vet Microbiol 2010; 140:281–286 [View Article] [PubMed]
    [Google Scholar]
  111. Lindsey NP, Martin SW, Staples JE, Fischer M. Notes from the field: multistate outbreak of Eastern equine encephalitis virus - United States, 2019. MMWR Morb Mortal Wkly Rep 2020; 69:50–51 [View Article] [PubMed]
    [Google Scholar]
  112. Petersen LR, Gubler DJ, Warrel DA, Cox TM, Firth JD et al. Infection: viruses: alphaviruses Oxford text B Med edn) Oxford Univ Oxford; 2003 pp 377–379
    [Google Scholar]
  113. Deresiewicz RL, Thaler SJ, Hsu L, Zamani AA. Clinical and neuroradiographic manifestations of Eastern equine encephalitis. N Engl J Med 1997; 336:1867–1874 [View Article] [PubMed]
    [Google Scholar]
  114. Greenlee JE. Chapter 19 - The equine encephalitides. Tselis A, Booss J. eds In Handbook of Clinical Neurology Elsevier; pp 417–432
    [Google Scholar]
  115. Simon LV FMA. Western Equine Encephalitis Treasure Island (FL: StatPearls Publishing;
    [Google Scholar]
  116. Liu JL, Shriver-Lake LC, Zabetakis D, Goldman ER, Anderson GP. Selection of Single-Domain antibodies towards western equine encephalitis virus. Antibodies 2018; 7:44
    [Google Scholar]
  117. Aguilar P, Estrada-Franco JG, Navarro-Lopez R, Ferro C, Haddow AD. Endemic Venezuelan equine encephalitis in the Americas: hidden under the dengue umbrella. Future Virol 2011; 6:721–740 [View Article] [PubMed]
    [Google Scholar]
  118. Logue CH, Phillips AT, Mossel EC, Ledermann JP, Welte T. Treatment with cationic liposome-DNA complexes (CLDCs) protects mice from lethal Western equine encephalitis virus (WEEV) challenge. Antiviral Res 2010; 87:195–203 [View Article] [PubMed]
    [Google Scholar]
  119. Foster JE. Viruses as pathogens: animal viruses affecting wild and domesticated species. In Viruses: Molecular Biology, Host Interactions, and Applications to Biotechnology 2018 pp 189–216
    [Google Scholar]
  120. Watts DM, Callahan J, Rossi C, Oberste MS, Roehrig JT. Venezuelan equine encephalitis febrile cases among humans in the Peruvian Amazon River region. Am J Trop Med Hyg 1998; 58:35–40 [View Article] [PubMed]
    [Google Scholar]
  121. Rusnak JM, Dupuy LC, Niemuth NA, Glenn AM, Ward LA. Comparison of aerosol- and percutaneous-acquired venezuelan equine encephalitis in humans and nonhuman primates for suitability in predicting clinical efficacy under the animal rule. Comp Med 2018; 68:380–395 [View Article] [PubMed]
    [Google Scholar]
  122. Taylor A, Herrero LJ, Rudd PA, Mahalingam S. Mouse models of alphavirus-induced inflammatory disease. J Gen Virol 2015; 96:221–238 [View Article] [PubMed]
    [Google Scholar]
  123. Chernecky CC, Berger BJ. Differential leukocyte count (diff) - peripheral blood. In Laboratory Test and Diagnostic Procedures 2013 pp 440–446
    [Google Scholar]
  124. Takeuchi O, Akira S. Innate immunity to virus infection. Immunol Rev 2009; 227:75–86 [View Article] [PubMed]
    [Google Scholar]
  125. Fros JJ, Pijlman GP. Alphavirus infection: Host cell shut-off and inhibition of antiviral responses. Viruses 2016; 8: [View Article] [PubMed]
    [Google Scholar]
  126. Zhang JM, An J. Cytokines, inflammation, and pain. Int Anesthesiol Clin 2007; 45:27–37 [View Article] [PubMed]
    [Google Scholar]
  127. Chirathaworn C, Poovorawan Y, Lertmaharit S, Wuttirattanakowit N. Cytokine levels in patients with chikungunya virus infection. Asian Pac J Trop Med 2013; 6:631–634 [View Article] [PubMed]
    [Google Scholar]
  128. Cruz CC, Suthar MS, Montgomery SA, Shabman R, Simmons J. Modulation of type I IFN induction by a virulence determinant within the alphavirus nsP1 protein. Virology 2010; 399:1–10 [View Article] [PubMed]
    [Google Scholar]
  129. Katze MG, He Y, Gale M. Viruses and interferon: A fight for supremacy. Nat Rev Immunol 2002; 2:675–687 [View Article] [PubMed]
    [Google Scholar]
  130. Wauquier N, Becquart P, Nkoghe D, Padilla C, Ndjoyi-Mbiguino A. The acute phase of Chikungunya virus infection in humans is associated with strong innate immunity and T CD8 cell activation. J Infect Dis 2011; 204:115–123 [View Article] [PubMed]
    [Google Scholar]
  131. Soden M, Vasudevan H, Roberts B, Coelen R, Hamlin G. Detection of viral ribonucleic acid and histologic analysis of inflamed synovium in Ross River virus infection. Arthritis Rheum 2000; 43:365–369 [View Article] [PubMed]
    [Google Scholar]
  132. Lidbury BA, Simeonovic C, Maxwell GE, Marshall ID, Hapel AJ. Macrophage-induced muscle pathology results in morbidity and mortality for Ross River virus-infected mice. J Infect Dis 2000; 181:27–34 [View Article] [PubMed]
    [Google Scholar]
  133. Gardner J, Anraku I, Le TT, Larcher T, Roques P et al. Chikungunya Virus Arthritis in Adult Wild-Type Mice Chikungunya Virus Arthritis in Adult Wild-Type Mice. J Virol 2010; 84:8021–8032
    [Google Scholar]
  134. Labadie K, Larcher T, Joubert C, Mannioui A, Delache B. Chikungunya disease in nonhuman primates involves long-term viral persistence in macrophages. J Clin Invest 2010; 120:894–906 [View Article] [PubMed]
    [Google Scholar]
  135. Lidbury BA, Rulli NE, Suhrbier A, Smith PN, McColl SR. Macrophage-derived proinflammatory factors contribute to the development of arthritis and myositis after infection with an arthrogenic alphavirus. J Infect Dis 2008; 197:1585–1593 [View Article] [PubMed]
    [Google Scholar]
  136. Long KM, Whitmore AC, Ferris MT, Sempowski GD, McGee C. Dendritic Cell Immunoreceptor regulates chikungunya virus pathogenesis in mice. J Virol 2013; 87:5697–5706 [View Article] [PubMed]
    [Google Scholar]
  137. Garmashova N, Atasheva S, Kang W, Weaver SC, Frolova E. Analysis of Venezuelan equine encephalitis virus capsid protein function in the inhibition of cellular transcription. J Virol 2007; 81:13552–13565 [View Article] [PubMed]
    [Google Scholar]
  138. Morazzani EM, Compton JR, Leary DH, Hu X. Proteolytic cleavage of host proteins by the Group IV viral proteases of Venezuelan equine encephalitis virus and Zika virus. Antiviral Res 2019; 164:106–122 [View Article] [PubMed]
    [Google Scholar]
  139. Nair S, Poddar S, Shimak RM, Diamond MS. Interferon Regulatory Factor 1 Protects against chikungunya virus-induced immunopathology by restricting infection in muscle cells. J Virol 2017; 91:1–14
    [Google Scholar]
  140. DeFranco AL, Locksley RM, Robertson M. Functions of TH1 cells. In Cellular and Molecular Immunology 2007 pp 140–142
    [Google Scholar]
  141. Mosmann TR, Sad S. The expanding universe of T-cell subsets: Th1, Th2 and more. Immunol Today 1996; 17:138–146 [View Article] [PubMed]
    [Google Scholar]
  142. Fong S-W, Kini RM, Ng LFP. Mosquito Saliva Reshapes Alphavirus Infection and Immunopathogenesis. J Virol 2018; 92: [View Article]
    [Google Scholar]
  143. Romagnani S. T-cell subsets (Th1 versus Th2. Annals of Allergy, Asthma & Immunology 2000; 85:9–18 [View Article]
    [Google Scholar]
  144. Durbin JE, Fernandez-Sesma A, Lee CK, Rao TD, Frey AB et al. Type I IFN modulates innate and specific antiviral immunity. J Immunol 2000; 164:4220–4228 [View Article] [PubMed]
    [Google Scholar]
  145. Morrow AN, Schmeisser H, Tsuno T, Zoon KC. A novel role for IFN-stimulated gene factor 3 II in IFN-γ signaling and induction of antiviral activity in human cells. J Immunol 2011; 186:1685–1693 [View Article] [PubMed]
    [Google Scholar]
  146. Agaugué S, Marcenaro E, Ferranti B, Moretta L, Moretta A. Human natural killer cells exposed to IL-2, IL-12, IL-18, or IL-4 differently modulate priming of naive T cells by monocyte-derived dendritic cells. Blood 2008; 112:1776–1783 [View Article] [PubMed]
    [Google Scholar]
  147. Müllbacher A, Blanden RV. Murine cytotoxic T-cell response to alphavirus is associated mainly withH- 2D (k). Immunogenetics 1978; 7:551–561 [View Article] [PubMed]
    [Google Scholar]
  148. Linn ML, Mateo L, Gardner J, Suhrbier A. Alphavirus-specific cytotoxic T lymphocytes recognize a cross-reactive epitope from the capsid protein and can eliminate virus from persistently infected macrophages. J Virol 1998; 72:5146–5153 [View Article] [PubMed]
    [Google Scholar]
  149. Chang A, Tritsch S, Reid S, Martins K, Encinales L. The Cytokine profile in acute chikungunya infection is predictive of chronic arthritis 20 months post infection. Diseases 2018; 6:95 [View Article]
    [Google Scholar]
  150. Bao H, Ramanathan AA, Kawalakar O, Sundaram SG, Tingey C. Nonstructural protein 2 (nsP2) of chikungunya virus (CHIKV) enhances protective immunity mediated by a CHIKV envelope protein expressing DNA vaccine. Viral Immunol 2013; 26:75–83 [View Article] [PubMed]
    [Google Scholar]
  151. Patil DR, Hundekar SL, Arankalle VA. Expression profile of immune response genes during acute myopathy induced by chikungunya virus in a mouse model. Microbes Infect 2012; 14:457–469 [View Article] [PubMed]
    [Google Scholar]
  152. Iijima N, Mattei LM, Iwasaki A. Recruited inflammatory monocytes stimulate antiviral Th1 immunity in infected tissue. Proc Natl Acad Sci U S A 2011; 108:284–289 [View Article] [PubMed]
    [Google Scholar]
  153. Trobaugh DW, Klimstra WB. Alphaviruses suppress host immunity by preventing myeloid cell replication and antagonizing innate immune responses. Curr Opin Virol 2017; 23:30–34 [View Article] [PubMed]
    [Google Scholar]
  154. White LK, Sali T, Alvarado D, Gatti E, Pierre P. Chikungunya virus induces IPS-1-dependent innate immune activation and protein kinase R-independent translational shutoff. J Virol 2011; 85:606–620 [View Article] [PubMed]
    [Google Scholar]
  155. Teo T-H, Lum F-M, Lee WWL, Ng LFP. Mouse models for Chikungunya virus: deciphering immune mechanisms responsible for disease and pathology. Immunol Res 2012; 53:136–147 [View Article] [PubMed]
    [Google Scholar]
  156. Kulcsar KA, Baxter VK, Greene IP, Griffin DE. Interleukin 10 modulation of pathogenic Th17 cells during fatal alphavirus encephalomyelitis. Proc Natl Acad Sci U S A 2014; 111:16053–16058 [View Article] [PubMed]
    [Google Scholar]
  157. Nikitina E, Larionova I, Choinzonov E, Kzhyshkowska J. Monocytes and macrophages as viral targets and reservoirs. IJMS 2018; 19:2821 [View Article]
    [Google Scholar]
  158. Ryman KD, Klimstra WB. Host responses to alphavirus infection. Immunol Rev 2008; 225:27–45 [View Article] [PubMed]
    [Google Scholar]
  159. Gardner CL, Burke CW, Tesfay MZ, Glass PJ, Klimstra WB. Eastern and Venezuelan equine encephalitis viruses differ in their ability to infect dendritic cells and macrophages: impact of altered cell tropism on pathogenesis. J Virol 2008; 82:10634–10646 [View Article] [PubMed]
    [Google Scholar]
  160. Zhu W, Li J, Liang G. How does cellular heparan sulfate function in viral pathogenicity?. Biomed Environ Sci 2011; 24:81–87 [View Article] [PubMed]
    [Google Scholar]
  161. Aronson JF, Grieder FB, Davis NL, Charles PC, Knott T. A single-site mutant and revertants arising in vivo define early steps in the pathogenesis of Venezuelan equine encephalitis virus. Virology 2000; 270:111–123 [View Article] [PubMed]
    [Google Scholar]
  162. Peltier DC, Lazear HM, Farmer JR, Diamond MS, Miller DJ. Neurotropic arboviruses induce interferon regulatory factor 3-mediated neuronal responses that are cytoprotective, interferon independent, and inhibited by Western equine encephalitis virus capsid. J Virol 2013; 87:1821–1833 [View Article] [PubMed]
    [Google Scholar]
  163. Sharma A, Maheshwari RK. Oligonucleotide array analysis of Toll-like receptors and associated signalling genes in Venezuelan equine encephalitis virus-infected mouse brain. J Gen Virol 2009; 90:1836–1847 [View Article] [PubMed]
    [Google Scholar]
  164. Sharma A, Bhomia M, Honnold SP, Maheshwari RK. Role of adhesion molecules and inflammation in Venezuelan equine encephalitis virus infected mouse brain. Virol J 2011; 8:197 [View Article] [PubMed]
    [Google Scholar]
  165. Lester SN, Li K. Toll-like receptors in antiviral innate immunity. J Mol Biol 2014; 426:1246–1264 [View Article] [PubMed]
    [Google Scholar]
  166. Li Q, Barres BA. Microglia and macrophages in brain homeostasis and disease. Nat Rev Immunol 2018; 18:225–242 [View Article] [PubMed]
    [Google Scholar]
  167. Klein RS, Garber C, Funk KE, Salimi H, Soung A. Neuroinflammation During RNA viral infections. Annu Rev Immunol 2019; 37:73–95 [View Article] [PubMed]
    [Google Scholar]
  168. Irani DN, Prow NA. Neuroprotective interventions targeting detrimental host immune responses protect mice from fatal alphavirus encephalitis. J Neuropathol Exp Neurol 2007; 66:533–544 [View Article] [PubMed]
    [Google Scholar]
  169. Welsh RM, Bahl K, Marshall HD, Urban SL. Type 1 interferons and antiviral CD8 T-cell responses. PLoS Pathog 2012; 8:e1002352 [View Article] [PubMed]
    [Google Scholar]
  170. Wu JQH. virulence determinants of new world alphaviruses and broad-acting therapeutic strategies. Future Virol 2019; 10:647
    [Google Scholar]
  171. Julander JG, Siddharthan V, Blatt LM, Schafer K, Sidwell RW. Effect of exogenous interferon and an interferon inducer on western equine encephalitis virus disease in a hamster model. Virology 2007; 360:454–460 [View Article] [PubMed]
    [Google Scholar]
  172. Abdelnabi R, Neyts J, Delang L. Towards antivirals against chikungunya virus. Antiviral Res 2015; 121:59–68 [View Article] [PubMed]
    [Google Scholar]
  173. Huber JP, David Farrar J. Regulation of effector and memory T-cell functions by type I interferon. Immunology 2011; 132:466–474 [View Article] [PubMed]
    [Google Scholar]
  174. Libbey JE, Fujinami RS. Chapter 10 - adaptive immune response to viral infections in the central nervous system. Tselis A, Booss J. eds In Handbook of Clinical Neurology Vol 123 Elsevier; 2014 pp 225–247 [View Article] [PubMed]
    [Google Scholar]
  175. Cohen C, Morazzani E, Kalinyak L, Glass P. T cell-mediated protection and epitope mapping with a trivalent alphavirus-like replicon particle vaccine (VIR2P.1167. J Immunol 2015; 194:75.6-75.6
    [Google Scholar]
  176. Yun NE, Peng BH, Bertke AS, Borisevich V, Smith JK. CD4+T cells provide protection against acute lethal encephalitis caused by Venezuelan equine encephalitis virus. Vaccine 2009; 27:4064–4073 [View Article] [PubMed]
    [Google Scholar]
  177. Baxter VK, Heise MT. Genetic control of alphavirus pathogenesis. Mamm Genome 2018; 29:408–424 [View Article] [PubMed]
    [Google Scholar]
  178. Chan Y-H, Ng LFP. Age has a role in driving host immunopathological response to alphavirus infection. Immunology 2017; 152:545–555 [View Article] [PubMed]
    [Google Scholar]
  179. Yeh JX, Schultz KLW, Calvert V, Petricoin EF, Griffin DE. The NF-κB/leukemia inhibitory factor/STAT3 signaling pathway in antibody-mediated suppression of Sindbis virus replication in neurons. Proc Natl Acad Sci U S A 2020; 117:29035–29045 [View Article] [PubMed]
    [Google Scholar]
  180. Fros JJ, Liu WJ, Prow NA, Geertsema C, Ligtenberg M. Chikungunya virus nonstructural protein 2 inhibits type I/II interferon-stimulated JAK-STAT signaling. J Virol 2010; 84:10877–10887 [View Article] [PubMed]
    [Google Scholar]
  181. Fros JJ, van der Maten E, Vlak JM, Pijlman GP. The C-terminal domain of chikungunya virus nsP2 independently governs viral RNA replication, cytopathicity, and inhibition of interferon signaling. J Virol 2013; 87:10394–10400 [View Article] [PubMed]
    [Google Scholar]
  182. Gardner CL, Burke CW, Higgs ST, Klimstra WB, Ryman KD. Interferon-alpha/beta deficiency greatly exacerbates arthritogenic disease in mice infected with wild-type chikungunya virus but not with the cell culture-adapted live-attenuated 181/25 vaccine candidate. Virology 2012; 425:103–112 [View Article] [PubMed]
    [Google Scholar]
  183. Akhrymuk I, Frolova EI. Evasion of the innate immune response: the Old World alphavirus nsP2 protein induces rapid degradation of Rpb1, a catalytic subunit of RNA polymerase II. J Virol 2012; 86:7180–7191 [View Article] [PubMed]
    [Google Scholar]
  184. Judith D, Mostowy S, Bourai M, Gangneux N, Lelek M. Species-specific impact of the autophagy machinery on Chikungunya virus infection. EMBO Rep 2013; 14:534–544 [View Article] [PubMed]
    [Google Scholar]
  185. Van Huizen E, McInerney GM. Activation of the PI3K-AKT Pathway by Old World Alphaviruses. Cells 2020; 9: [View Article] [PubMed]
    [Google Scholar]
  186. Liu L, Weiss E, Panas MD, Götte B, Sellberg S. RNA processing bodies are disassembled during Old World alphavirus infection. J Gen Virol 2019; 100:1375–1389 [View Article] [PubMed]
    [Google Scholar]
  187. Contu L, Balistreri G, Domanski M, Uldry A-C, Mühlemann O. Characterisation of the Semliki Forest Virus-host cell interactome reveals the viral capsid protein as an inhibitor of nonsense-mediated mRNA decay. PLoS Pathog 2021; 17:e1009603 [View Article] [PubMed]
    [Google Scholar]
  188. Atasheva S, Fish A, Fornerod M, Frolova EI. Venezuelan equine Encephalitis virus capsid protein forms a tetrameric complex with CRM1 and importin alpha/beta that obstructs nuclear pore complex function. J Virol 2010; 84:4158–4171 [View Article] [PubMed]
    [Google Scholar]
  189. Lundberg L, Pinkham C, de la Fuente C, Brahms A, Shafagati N. Selective Inhibitor of Nuclear Export (SINE) compounds alter new world alphavirus capsid localization and reduce viral replication in mammalian cells. PLoS Negl Trop Dis 2016; 10:e0005122 [View Article] [PubMed]
    [Google Scholar]
  190. Hyde JL, Gardner CL, Kimura T, White JP, Liu G. A viral RNA structural element alters host recognition of nonself RNA. Science 2014; 343:783–787 [View Article] [PubMed]
    [Google Scholar]
  191. Briolant S, Garin D, Scaramozzino N, Jouan A, Crance JM. In vitro inhibition of Chikungunya and Semliki Forest viruses replication by antiviral compounds: Synergistic effect of interferon-α and ribavirin combination. Antiviral Res 2004; 61:111–117 [View Article] [PubMed]
    [Google Scholar]
  192. Guevara LE. In vitro inhibition of Sindbis virus replication by glycyrrhizin. FASEB J 2010; 24: [View Article]
    [Google Scholar]
  193. Focus F, Mesylate I, Costlow JL, Krow ES, Steel JJ. IMATINIB mesylate as an effective anti-viral treatment for alphavirus infections; 20173
  194. Pal P, Dowd KA, Brien JD, Edeling MA, Gorlatov S. Development of a highly protective combination monoclonal antibody therapy against Chikungunya virus. PLoS Pathog 2013; 9:e1003312 [View Article] [PubMed]
    [Google Scholar]
  195. Seyhan AA, Vitiello D, Shields MT, Burke JM. Ribozyme Inhibition of Alphavirus Replication. J Biol Chem 2002; 277:25957–25962 [View Article] [PubMed]
    [Google Scholar]
  196. Ylosmaki E, Martikainen M, Hinkkanen A, Saksela K. Attenuation of Semliki Forest Virus Neurovirulence by MicroRNA-Mediated Detargeting. J Virol 2013; 87:335–344 [View Article] [PubMed]
    [Google Scholar]
  197. Martikainen M. Identifying virus-host interactions critical for alphavirus-mediated oncolysis; 2015
  198. Parashar D, Paingankar MS, Kumar S, Gokhale MD, Sudeep AB. Administration of E2 and NS1 siRNAs inhibit chikungunya virus replication in vitro and protects mice infected with the virus. PLoS Negl Trop Dis 2013; 7:e2405 [View Article] [PubMed]
    [Google Scholar]
  199. Saha A, Bhagyawant SS, Parida M, Dash PK. Vector-delivered artificial miRNA effectively inhibited replication of Chikungunya virus. Antiviral Res 2016; 134:42–49 [View Article] [PubMed]
    [Google Scholar]
  200. Lam S, Chen KC, Ng MM-L, Chu JJH. Expression of plasmid-based shRNA against the E1 and nsP1 genes effectively silenced Chikungunya virus replication. PLoS One 2012; 7:e46396 [View Article] [PubMed]
    [Google Scholar]
  201. Kim AS, Austin SK, Gardner CL, Zuiani A, Reed DS. Protective antibodies against Eastern equine encephalitis virus bind to epitopes in domains A and B of the E2 glycoprotein. Nat Microbiol 2019; 4:187–197 [View Article] [PubMed]
    [Google Scholar]
  202. SY K, Akahata W, Yang ES, Kong WP, Burke CW et al. A virus-like particle vaccine prevents equine encephalitis virus infection in nonhuman primates. Sci Transl Med 2019; 11:12
    [Google Scholar]
  203. Duggan JM, Coates DM, Ulaeto DO. Isolation of single-chain antibody fragments against Venezuelan equine encephalomyelitis virus from two different immune sources. Viral Immunol 2001; 14:263–273 [View Article] [PubMed]
    [Google Scholar]
  204. Hunt AR, Frederickson S, Maruyama T, Roehrig JT, Blair CD. The first human epitope map of the alphaviral E1 and E2 proteins reveals a new E2 epitope with significant virus neutralizing activity. PLoS Negl Trop Dis 2010; 4:e739 [View Article] [PubMed]
    [Google Scholar]
  205. Rulker T, Voss L, Thullier P, OB LM, Pelat T. Isolation and characterisation of a human-like antibody fragment (scFv) that inactivates VEEV in vitro and in vivo. PLoS One 2012; 7:e37242 [View Article] [PubMed]
    [Google Scholar]
  206. Burke CW, Froude JW, Hulseweh B, Hust M et al. Human-like neutralizing antibodies protect mice from aerosol exposure with western equine encephalitis virus. Viruses-Basel 2018; 10:7
    [Google Scholar]
  207. Samsa MM, Dupuy LC, Beard CW, Six CM, Schmaljohn CS. Self-Amplifying RNA vaccines for venezuelan equine encephalitis virus induce robust protective immunogenicity in mice. Mol Ther 2019; 27:850–865 [View Article] [PubMed]
    [Google Scholar]
  208. Pagano MA, Tibaldi E, Palù G, Brunati AM. Viral proteins and Src family kinases: Mechanisms of pathogenicity from a ‘liaison dangereuse. World J Virol 2013; 2:71–78 [View Article] [PubMed]
    [Google Scholar]
  209. Broeckel R, Sarkar S, May NA, Totonchy J, Kreklywich CN et al. Src Family kinase inhibitors block translation of alphavirus subgenomic mRNAs. Antimicrob Agents Chemother 2019; 63:20
    [Google Scholar]
  210. Ahmed A, Siman-Tov G, Keck F, Kortchak S, Bakovic A. Human cathelicidin peptide LL-37 as a therapeutic antiviral targeting Venezuelan equine encephalitis virus infections. Antiviral Res 2019; 164:61–69 [View Article] [PubMed]
    [Google Scholar]
  211. Powers AM. Vaccine and therapeutic options to control chikungunya virus. Clin Microbiol Rev 2018; 31:1–29
    [Google Scholar]
  212. Subudhi BB, Chattopadhyay S, Mishra P, Kumar A. Current strategies for inhibition of Chikungunya infection. Viruses 2018; 10: [View Article] [PubMed]
    [Google Scholar]
  213. Rabelo V-H, Abreu PA. Targeting Chikungunya virus by computational approaches: from viral biology to the development of therapeutic strategies. Expert Opin Ther Targets 2020; 24:63–78 [View Article] [PubMed]
    [Google Scholar]
  214. Martins DOS, de Oliveira DM, Grosche VR, Jardim ACG. Antivirals against Chikungunya virus: is the solution in nature?. Viruses 2020; 12: [View Article] [PubMed]
    [Google Scholar]
  215. Kumar R, Shrivastava T, Samal S, Ahmed S, Parray HA. Antibody-based therapeutic interventions: possible strategy to counter chikungunya viral infection. Appl Microbiol Biotechnol 2020; 104:3209–3228 [View Article] [PubMed]
    [Google Scholar]
  216. Suhrbier A. Rheumatic manifestations of chikungunya: emerging concepts and interventions. Nat Rev Rheumatol 2019; 15:597–611 [View Article] [PubMed]
    [Google Scholar]
  217. Mostafavi H, Abeyratne E, Zaid A, Taylor A. Arthritogenic Alphavirus-Induced Immunopathology and targeting host inflammation as a therapeutic strategy for alphaviral disease. Viruses 2019; 11: [View Article] [PubMed]
    [Google Scholar]
  218. Wong KZ, JJH C. The interplay of viral and host factors in chikungunya virus infection: targets for antiviral strategies. Viruses 2018; 10: [View Article] [PubMed]
    [Google Scholar]
  219. Sales G, Barbosa ICP, Canejo Neta LMS, de MP. Treatment of chikungunya chronic arthritis: A systematic review. Rev Assoc Med Bras (1992) 2018; 64:63–70 [View Article] [PubMed]
    [Google Scholar]
  220. Abdelnabi R, Delang L. Antiviral strategies against arthritogenic Alphaviruses. Microorganisms 2020; 8: [View Article] [PubMed]
    [Google Scholar]
  221. Abdelnabi R, Jacobs S, Delang L, Neyts J. Antiviral drug discovery against arthritogenic alphaviruses: Tools and molecular targets. Biochem Pharmacol 2020; 174:113777 [View Article] [PubMed]
    [Google Scholar]
  222. Carey BD, Bakovic A, Callahan V, Narayanan A, Kehn-Hall K. New World alphavirus protein interactomes from a therapeutic perspective. Antiviral Res 2019; 163:125–139 [View Article] [PubMed]
    [Google Scholar]
  223. Abu Bakar F, LFP N. Nonstructural Proteins of Alphavirus-Potential Targets for Drug Development. Viruses 2018; 10: [View Article] [PubMed]
    [Google Scholar]
  224. Ching K-. C. A compendium of small molecule direct-acting and host-targeting inhibitors as therapies against alphaviruses. J Antimicrob Chemother 2017; 72:2973–2989 [View Article] [PubMed]
    [Google Scholar]
  225. Atasheva S, Wang E, Adams AP, Plante KS, Ni S. Chimeric alphavirus vaccine candidates protect mice from intranasal challenge with western equine encephalitis virus. Vaccine 2009; 27:4309–4319 [View Article] [PubMed]
    [Google Scholar]
  226. Barabe ND, Rayner GA, Christopher ME, Nagata LP, JQ W. Single-dose, fast-acting vaccine candidate against western equine encephalitis virus completely protects mice from intranasal challenge with different strains of the virus. Vaccine 2007; 25:6271–6276 [View Article] [PubMed]
    [Google Scholar]
  227. Nagata LP, WG H, Masri SA, Rayner GA, Schmaltz FL. Efficacy of DNA vaccination against western equine encephalitis virus infection. Vaccine 2005; 23:2280–2283 [View Article] [PubMed]
    [Google Scholar]
  228. Dupuy LC, Locher CP, Paidhungat M, Richards MJ, Lind CM. Directed molecular evolution improves the immunogenicity and protective efficacy of a Venezuelan equine encephalitis virus DNA vaccine. Vaccine 2009; 27:4152–4160 [View Article] [PubMed]
    [Google Scholar]
  229. Wu JQH, Barabé ND, Huang Y-M, Rayner GA, Christopher ME et al. Pre- and post-exposure protection against Western equine encephalitis virus after single inoculation with adenovirus vector expressing interferon alpha. Virology 2007; 369:206–213 [View Article] [PubMed]
    [Google Scholar]
  230. Ferreira-Ramos AS, CQ L, Eydoux C, Contreras JM, Morice C. Approved drugs screening against the nsP1 capping enzyme of Venezuelan equine encephalitis virus using an immuno-based assay. Antiviral Res 2019; 163:59–69 [View Article] [PubMed]
    [Google Scholar]
  231. Torres-Ruesta A, Chee RS-L, Ng LFP. Insights into antibody-mediated alphavirus immunity and vaccine development landscape. Microorganisms 2021; 9: [View Article] [PubMed]
    [Google Scholar]
  232. Lundstrom K. Replicon RNA viral vectors as vaccines. Vaccines (Basel) 2016; 4: [View Article] [PubMed]
    [Google Scholar]
  233. Erasmus JH, Rossi SL, Weaver SC. Development of vaccines for chikungunya fever. J Infect Dis 2016; 214:S488–S496 [View Article] [PubMed]
    [Google Scholar]
  234. Gerke C, Frantz PN, Ramsauer K, Tangy F. Measles-vectored vaccine approaches against viral infections: a focus on Chikungunya. Expert Rev Vaccines 2019; 18:393–403 [View Article] [PubMed]
    [Google Scholar]
  235. Ghildiyal R, Gabrani R. Antiviral therapeutics for chikungunya virus. Expert Opin Ther Pat 2020; 30:467–480 [View Article] [PubMed]
    [Google Scholar]
  236. Sharma A, Knollmann-Ritschel B. Current understanding of the molecular basis of venezuelan equine encephalitis virus pathogenesis and vaccine development. Viruses 2019; 11:164 [View Article]
    [Google Scholar]
  237. Stromberg ZR, Fischer W, Bradfute SB, Kubicek-Sutherland JZ, Hraber P. Vaccine Advances against Venezuelan, Eastern, and Western Equine Encephalitis Viruses. Vaccines (Basel) 2020; 8: [View Article] [PubMed]
    [Google Scholar]
  238. Rajapakse S, Rodrigo C, Rajapakse A. Atypical manifestations of chikungunya infection. Trans R Soc Trop Med Hyg 2010; 104:89–96 [View Article] [PubMed]
    [Google Scholar]
  239. Spurgers K, Glass P. Vaccine Development for biothreat alpha viruses. In Journal of Bioterrorism & Biodefense Vol 01 2011 [View Article]
    [Google Scholar]
  240. Jacobs SC, Taylor A, Herrero LJ, Mahalingam S, Fazakerley JK. Mutation of a conserved nuclear export sequence in chikungunya virus capsid protein disrupts host cell nuclear import. Viruses 2017; 9: [View Article] [PubMed]
    [Google Scholar]
  241. Hooper JW, Ferro AM, Golden JW, Silvera P, Dudek J. Molecular smallpox vaccine delivered by alphavirus replicons elicits protective immunity in mice and non-human primates. Vaccine 2009; 28:494–511 [View Article] [PubMed]
    [Google Scholar]
  242. Gasque P, Couderc T, Lecuit M, Roques P, LFP N. Chikungunya virus pathogenesis and immunity. Vector Borne Zoonotic Dis 2015; 15:241–249 [View Article] [PubMed]
    [Google Scholar]
  243. Solignat M, Gay B, Higgs S, Briant L, Devaux C. Replication cycle of chikungunya: A re-emerging arbovirus. Virology 2009; 393:183–197 [View Article] [PubMed]
    [Google Scholar]
  244. Ruiz Silva M, Van Der Ende-Metselaar H, Mulder HL, Smit JM, Rodenhuis-Zybert IA. Mechanism and role of MCP-1 upregulation upon chikungunya virus infection in human peripheral blood mononuclear cells. Sci Rep 2016; 6:32288 [View Article] [PubMed]
    [Google Scholar]
  245. Hengel H, Koszinowski UH, Conzelmann KK. Viruses know it all: New insights into IFN networks. Trends Immunol 2005; 26:396–401 [View Article] [PubMed]
    [Google Scholar]
  246. Ashbrook AW, Burrack KS, Silva LA, Montgomery SA, Heise MT. Residue 82 of the Chikungunya virus E2 attachment protein modulates viral dissemination and arthritis in mice. J Virol 2014; 88:12180–12192 [View Article] [PubMed]
    [Google Scholar]
  247. Morrison TE. Animal Models for Chikungunya Virus and Zika Virus Elsevier Inc; [View Article]
    [Google Scholar]
  248. Wang E, Volkova E, Adams AP, Forrester N, Xiao SY. Chimeric alphavirus vaccine candidates for chikungunya. Vaccine 2008; 26:5030–5039 [View Article] [PubMed]
    [Google Scholar]
  249. Lee CY, Kam YW, Fric J, Malleret B, EGL K. Chikungunya virus neutralization antigens and direct cell-to-cell transmission are revealed by human antibody-escape mutants. PLoS Pathog 2011; 7:e1002390 [View Article] [PubMed]
    [Google Scholar]
  250. Danillo Lucas Alves E, Benedito Antonio Lopes da F. Characterization of the immune response following in vitro mayaro and chikungunya viruses (Alphavirus, Togaviridae) infection of mononuclear cells. Virus Res 2018; 256:166–173 [View Article] [PubMed]
    [Google Scholar]
  251. Mukerji SS, Lam AD, Wilson MR. Eastern equine encephalitis treated with intravenous immunoglobulins. Neurohospitalist 2016; 6:29–31 [View Article] [PubMed]
    [Google Scholar]
  252. Metz SW, Gardner J, Geertsema C, TT L, Goh L. Effective Chikungunya Virus-like Particle Vaccine Produced in Insect Cells. PLoS Negl Trop Dis 2013; 7:e2124 [View Article] [PubMed]
    [Google Scholar]
  253. Kamrud KI, Coffield VM, Owens G, Goodman C, Alterson K et al. In vitro and in vivo characterization of microRNA-targeted alphavirus replicon and helper RNAs. J Virol 2010; 84:7713–7725 [View Article] [PubMed]
    [Google Scholar]
  254. Lulla V, Kim DY, Frolova EI, Frolov I. The Amino-Terminal Domain of Alphavirus capsid protein is dispensable for viral particle assembly but regulates RNA encapsidation through cooperative functions of its subdomains. J Virol 2013; 87:12003–12019 [View Article] [PubMed]
    [Google Scholar]
  255. Adouchief S, Smura T, Sane J, Vapalahti O, Kurkela S. Sindbis virus as a human pathogen- epidemiology, clinical picture and pathogenesis. Rev Med Virol 2016; 26:221–241 [View Article] [PubMed]
    [Google Scholar]
  256. Suhrbier A, La Linn M. Clinical and pathologic aspects of arthritis due to Ross River virus and other alphaviruses. Curr Opin Microbiol 2004; 16:374–379
    [Google Scholar]
  257. Scott TW, Weaver SC. Eastern equine encephalomyelitis virus: epidemiology and evolution of mosquito transmission. Adv Virus Res 1989; 37:277–328 [View Article] [PubMed]
    [Google Scholar]
  258. Reeves WC, Hutson GA, Bellamy RE, Scrivani RP. Chronic latent infections of birds with Western equine encephalomyelitis virus. Proc Soc Exp Biol Med 1958; 97:733–736 [View Article] [PubMed]
    [Google Scholar]
  259. Johnson KM, Martin DH. Venezuelan equine encephalitis. Adv Vet Sci Comp Med 1974; 18:79–116 [PubMed]
    [Google Scholar]
  260. Seyhan AA, Alizadeh BN, Lundstrom K, Johnston BH. RNA interference-mediated inhibition of Semliki Forest virus replication in mammalian cells. Oligonucleotides 2007; 17:473–484 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.001644
Loading
/content/journal/jgv/10.1099/jgv.0.001644
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error