1887

Abstract

A Gram-stain-negative, non-motile, aerobic and rod-shaped bacterium, strain Ra1, was isolated from the gut of a wood-feeding lower termite, . Phylogenetic analysis of 16S rRNA gene sequences showed that the strain was closely related to JCM 18078 (96.7 % similarity). Growth was observed at 15–45 °C (optimum 30 °C), at pH 6.0–9.0 (optimum pH 8.0) and in the presence of 0–2 % (w/v) NaCl (optimum 0 %). The DNA G+C content of strain Ra1 was 39.9 mol%. Cells contained menaquinone MK-6 as the sole respiratory quinone and the major fatty acids were iso-C, iso-C, summed feature 3 (comprising Cω6 and/or Cω7) and summed feature 9 (comprising C 10-methyl and/or iso-Cω9). The predominant polyamine was homospermidine. The cellular polar lipids consisted of one phosphatidylethanolamine, three unidentified aminolipids, one unidentified phospholipid and one unidentified lipid. Based on phenotypic, genotypic and phylogenetic studies, it is concluded that strain Ra1 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is Ra1 (=CCTCC AB 2015431=KCTC 52230).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001848
2017-06-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/6/1698.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001848&mimeType=html&fmt=ahah

References

  1. Vandamme P, Bernardet J-F, Segers P, Kersters K, Holmes B. New perspectives in the classification of the flavobacteria: description of Chryseobacterium gen. nov., Bergeyella gen. nov., and Empedobacter nom. rev. Int J Syst Bacteriol 1994; 44:827–831 [View Article]
    [Google Scholar]
  2. Kämpfer P, Vaneechoutte M, Lodders N, de Baere T, Avesani V et al. Description of Chryseobacterium anthropi sp. nov. to accommodate clinical isolates biochemically similar to Kaistella koreensis and Chryseobacterium haifense, proposal to reclassify Kaistella koreensis as Chryseobacterium koreense comb. nov. and emended description of the genus Chryseobacterium. Int J Syst Evol Microbiol 2009; 59:2421–2428 [View Article][PubMed]
    [Google Scholar]
  3. Wu YF, Wu QL, Liu SJ. Chryseobacterium taihuense sp. nov., isolated from a Eutrophic Lake, and emended descriptions of the genus Chryseobacterium, Chryseobacterium taiwanense, Chryseobacterium jejuense and Chryseobacterium indoltheticum. Int J Syst Evol Microbiol 2013; 63:913–919 [View Article][PubMed]
    [Google Scholar]
  4. Shen FT, Kämpfer P, Young CC, Lai WA, Arun AB. Chryseobacterium taichungense sp. nov., isolated from contaminated soil. Int J Syst Evol Microbiol 2005; 55:1301–1304 [View Article][PubMed]
    [Google Scholar]
  5. Weon HY, Kim BY, Yoo SH, Kwon SW, Stackebrandt E et al. Chryseobacterium soli sp. nov. and Chryseobacterium jejuense sp. nov., isolated from soil samples from Jeju, Korea. Int J Syst Evol Microbiol 2008; 58:470–473 [View Article][PubMed]
    [Google Scholar]
  6. Park YJ, Son HM, Lee EH, Kim JH, Mavlonov GT et al. Chryseobacterium gwangjuense sp. nov., isolated from soil. Int J Syst Evol Microbiol 2013; 63:4580–4585 [View Article][PubMed]
    [Google Scholar]
  7. Zhao Q, Bai Y, Zhang G, Zhu S, Sheng H et al. Chryseobacterium xinjiangense sp. nov., isolated from alpine permafrost. Int J Syst Evol Microbiol 2011; 61:1397–1401 [View Article][PubMed]
    [Google Scholar]
  8. Kim KK, Bae HS, Schumann P, Lee ST. Chryseobacterium daecheongense sp. nov., isolated from freshwater lake sediment. Int J Syst Evol Microbiol 2005; 55:133–138 [View Article][PubMed]
    [Google Scholar]
  9. Strahan BL, Failor KC, Batties AM, Hayes PS, Cicconi KM et al. Chryseobacterium piperi sp. nov., isolated from a freshwater creek. Int J Syst Evol Microbiol 2011; 61:2162–2166 [View Article][PubMed]
    [Google Scholar]
  10. Yoon JH, Kang SJ, Oh TK. Chryseobacterium daeguense sp. nov., isolated from wastewater of a textile dye works. Int J Syst Evol Microbiol 2007; 57:1355–1359 [View Article][PubMed]
    [Google Scholar]
  11. Young CC, Kämpfer P, Shen FT, Lai WA, Arun AB. Chryseobacterium formosense sp. nov., isolated from the rhizosphere of Lactuca sativa L. (garden lettuce). Int J Syst Evol Microbiol 2005; 55:423–426 [View Article][PubMed]
    [Google Scholar]
  12. Nguyen NL, Kim YJ, Hoang VA, Yang DC. Chryseobacterium ginsengisoli sp. nov., isolated from the rhizosphere of ginseng and emended description of Chryseobacterium gleum. Int J Syst Evol Microbiol 2013; 63:2975–2980 [View Article][PubMed]
    [Google Scholar]
  13. Campbell S, Harada RM, Li QX. Chryseobacterium arothri sp. nov., isolated from the kidneys of a pufferfish. Int J Syst Evol Microbiol 2008; 58:290–293 [View Article][PubMed]
    [Google Scholar]
  14. Loch TP, Faisal M. Chryseobacterium aahli sp. nov., isolated from lake trout (Salvelinus namaycush) and Brown trout (Salmo trutta), and emended descriptions of Chryseobacterium ginsenosidimutans and Chryseobacterium gregarium. Int J Syst Evol Microbiol 2014; 64:1573–1579 [View Article][PubMed]
    [Google Scholar]
  15. de Beer H, Hugo CJ, Jooste PJ, Willems A, Vancanneyt M et al. Chryseobacterium vrystaatense sp. nov., isolated from raw chicken in a chicken-processing plant. Int J Syst Evol Microbiol 2005; 55:2149–2153 [View Article][PubMed]
    [Google Scholar]
  16. Charimba G, Jooste P, Albertyn J, Hugo C. Chryseobacterium carnipullorum sp. nov., isolated from raw chicken. Int J Syst Evol Microbiol 2013; 63:3243–3249 [View Article][PubMed]
    [Google Scholar]
  17. Kämpfer P, Chandel K, Prasad GB, Shouche YS, Veer V. Chryseobacterium culicis sp. nov., isolated from the midgut of the mosquito culex quinquefasciatus. Int J Syst Evol Microbiol 2010; 60:2387–2391 [View Article][PubMed]
    [Google Scholar]
  18. Bernardet JF, Bruun B, Hugo C. The genera Chryseobacterium and Elizabethkingia. In Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E. (editors) The Prokaryotes: A Handbook on the Biology of Bacteria, 3rd ed. vol. 7 New York: Springer; 2006 pp. 638–676
    [Google Scholar]
  19. Chen W, Wang B, Hong H, Yang H, Liu SJ. Deinococcus reticulitermitis sp. nov., isolated from a termite gut. Int J Syst Evol Microbiol 2012; 62:78–83 [View Article][PubMed]
    [Google Scholar]
  20. Park SJ, Choi JH, Cha CJ. Chryseobacterium rigui sp. nov., isolated from an estuarine wetland. Int J Syst Evol Microbiol 2013; 63:1062–1067 [View Article][PubMed]
    [Google Scholar]
  21. Holmes B, Owen RJ, Steigerwalt AG, Brenner DJ. Flavobacterium gleum, a new species found in human clinical specimens. Int J Syst Bacteriol 1984; 34:21–25 [View Article]
    [Google Scholar]
  22. Edwards U, Rogall T, Blöcker H, Emde M, Böttger EC. Isolation and direct complete nucleotide determination of entire genes. characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Res 1989; 17:7843–7853 [View Article][PubMed]
    [Google Scholar]
  23. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16s ribosomal DNA amplification for phylogenetic study. J Bacteriol 1991; 173:697–703 [View Article][PubMed]
    [Google Scholar]
  24. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990; 215:403–410 [View Article][PubMed]
    [Google Scholar]
  25. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25:4876–4882 [View Article][PubMed]
    [Google Scholar]
  26. Tamura K, Peterson D, Peterson N, Stecher G, Nei M et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011; 28:2731–2739 [View Article][PubMed]
    [Google Scholar]
  27. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425[PubMed]
    [Google Scholar]
  28. Olsen GJ, Matsuda H, Hagstrom R, Overbeek R. fastDNAmL: a tool for construction of phylogenetic trees of DNA sequences using maximum likelihood. Comput Appl Biosci 1994; 10:41–48 [View Article][PubMed]
    [Google Scholar]
  29. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article][PubMed]
    [Google Scholar]
  30. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article]
    [Google Scholar]
  31. Bernardet JF, Nakagawa Y, Holmes B.Subcommittee on the taxonomy of Flavobacterium and Cytophaga-like bacteria of the International Committee on Systematics of Prokaryotes Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 2002; 52:1049–1070 [View Article][PubMed]
    [Google Scholar]
  32. Gerhardt P, Murray RGE, Wood WA, Krieg NR. Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994
    [Google Scholar]
  33. Tittsler RP, Sandholzer LA. The use of Semi-solid agar for the detection of bacterial motility. J Bacteriol 1936; 31:575–580[PubMed]
    [Google Scholar]
  34. Pires C, Carvalho MF, de Marco P, Magan N, Castro PM. Chryseobacterium palustre sp. nov. and Chryseobacterium humi sp. nov., isolated from industrially contaminated sediments. Int J Syst Evol Microbiol 2010; 60:402–407 [View Article][PubMed]
    [Google Scholar]
  35. Lányí B. Classical and rapid identification methods for medically important bacteria. Methods Microbiol 1987; 19:1–67
    [Google Scholar]
  36. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994 pp. 607–654
    [Google Scholar]
  37. Barrow GI, Feltham RKA. Cowan and Steel’s Manual for Identification of Medical Bacteria, 3rd ed. Cambridge: Cambridge University Press; 1993 [CrossRef]
    [Google Scholar]
  38. Richard C, Kiredjian M. Laboratory Methods for the Identification of Strictly Aerobic Gram-Negative Bacilli Paris: Institut Pasteur; 1995
    [Google Scholar]
  39. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids,, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  40. Collins MD. Isoprenoid quinone analysis in classification and identification. In Goodfellow M, Minnikin DE. (editors) Chemical Methods in Bacterial Systematics London: Academic Press; 1985 pp. 267–287
    [Google Scholar]
  41. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  42. Komagata K, Suzuki K. Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 1987; 19:177–182
    [Google Scholar]
  43. Tindall BJ. Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 1990; 66:199–202 [View Article]
    [Google Scholar]
  44. Schenkel E, Berlaimont V, Dubois J, Helson-Cambier M, Hanocq M. Improved high-performance liquid chromatographic method for the determination of polyamines as their benzoylated derivatives: application to P388 cancer cells. J Chromatogr B Biomed Appl 1995; 668:189–197 [View Article][PubMed]
    [Google Scholar]
  45. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 1989; 39:159–167 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001848
Loading
/content/journal/ijsem/10.1099/ijsem.0.001848
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error