1887

Abstract

Many cyanobacteria produce extracellular polymeric substances (EPS) mainly of polysaccharidic nature. These EPS can remain associated to the cell surface as sheaths, capsules and/or slimes, or be liberated into the surrounding environment as released polysaccharides (RPS). The ability of EPS-producing cyanobacteria to remove heavy metals from aqueous solutions has been widely reported in the literature, focusing mainly on the biotechnological potential. However, the knowledge of the effects of the metals in the cell's survival/growth is still scarce, particularly when they are simultaneously exposed to more than one metal. This work evaluated the effects of different concentrations of Cu and/or Pb in the growth/survival of sp. PCC 6909 and its sheathless mutant sp. CCY 9612. The results obtained clearly showed that both phenotypes are more severely affected by Cu than Pb, and that the mutant is more sensitive to the former metal than the wild-type. Evident ultrastructural changes were also observed in the wild-type and mutant cells exposed to high levels (10 mg l) of Cu. Moreover, in bi-metal systems, Pb was preferentially removed compared with Cu, being the RPS of the mutant that is the most efficient polysaccharide fraction in metal removal. In these systems, the simultaneous presence of Cu and Pb caused a mutual inhibition in the adsorption of each metal.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.041038-0
2011-02-01
2024-04-02
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/2/451.html?itemId=/content/journal/micro/10.1099/mic.0.041038-0&mimeType=html&fmt=ahah

References

  1. Allen M. M. 1984; Cyanobacterial cell inclusions. Annu Rev Microbiol 38:1–25
    [Google Scholar]
  2. Arunakumara K. K. I. U., Zhang X., Song X. 2008; Bioaccumulation of Pb2+ and its effects on growth, morphology and pigment contents of Spirulina Arthrospira ) platensis . J Ocean Univ China 7:397–403
    [Google Scholar]
  3. Baptista M. S., Vasconcelos M. T. 2006; Cyanobacteria metal interactions: requirements, toxicity, and ecological implications. Crit Rev Microbiol 32:127–137
    [Google Scholar]
  4. Baron J., Arellano J. B., Gorge J. L. 1995; Copper and photosystem II: a controversial relationship. Physiol Plant 94:174–180
    [Google Scholar]
  5. Burnat M., Diestra E., Esteve I., Sole A. 2009; In situ determination of the effects of lead and copper on cyanobacterial populations in microcosms. PLoS ONE 4:e6204
    [Google Scholar]
  6. Can C., Jianlong W. 2007; Correlating metal ionic characteristics with biosorption capacity using QSAR model. Chemosphere 69:1610–1616
    [Google Scholar]
  7. Cavet J. S., Borrelly G. P. M., Robinson N. J. 2003; Zn, Cu and Co in cyanobacteria: selective control of metal availability. FEMS Microbiol Rev 27:165–181
    [Google Scholar]
  8. Chaloub R. M., de Magalhães C. C. P., dos Santos C. P. 2005; Early toxic effects of zinc on PSII of Synechocystis aquatilis f aquatilis (Cyanophyceae). J Phycol 41:1162–1168
    [Google Scholar]
  9. De la Cerda B., Castielli O., Durán R. V., Navarro J. A., Hervás M., De la Rosa M. A. 2007; A proteomic approach to iron and copper homeostasis in cyanobacteria. Brief Funct Genomic Proteomic 6:322–329
    [Google Scholar]
  10. De Philippis R., Micheletti E. 2009; Heavy metal removal with exopolysaccharide-producing cyanobacteria. In Heavy Metals in the Environment pp 89–122 Edited by Wang L. K., Chen J. P., Hung Y.-T., Shammas N. K. Boca Raton, USA: CRC Press;
    [Google Scholar]
  11. De Philippis R., Vincenzini M. 2003; Outermost polysaccharidic investments of cyanobacteria: nature, significance and possible applications. Recent Res Dev Microbiology 7:13–22
    [Google Scholar]
  12. De Philippis R., Sili C., Paperi R., Vincenzini M. 2001; Exopolysaccharide-producing cyanobacteria and their possible exploitation: a review. J Appl Phycol 13:293–299
    [Google Scholar]
  13. De Philippis R., Paperi R., Sili C. 2007; Heavy metal sorption by released polysaccharides and whole cultures of two exopolysaccharide-producing cyanobacteria. Biodegradation 18:181–187
    [Google Scholar]
  14. Dubois M., Gilles K. A., Hamilton J. K., Rebers P. A., Smith F. 1956; Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356
    [Google Scholar]
  15. Fiore M. F., Trevors J. T. 1994; Cell composition and metal tolerance in cyanobacteria. Biometals 7:83–103
    [Google Scholar]
  16. Gaetke L. M., Chow C. K. 2003; Copper toxicity, oxidative stress, and antioxidant nutrients. Toxicology 189:147–163
    [Google Scholar]
  17. Hawari A. H., Mulligan C. N. 2007; Effect of the presence of lead on the biosorption of copper, cadmium and nickel by anaerobic biomass. Process Biochem 42:1546–1552
    [Google Scholar]
  18. Heng L. Y., Jusoh K., Ling C. H. M., Idris M. 2004; Toxicity of single and combinations of lead and cadmium to the cyanobacteria Anabaena flos-aquae . Bull Environ Contam Toxicol 72:373–379
    [Google Scholar]
  19. Ishaque A. B., Johnson L., Gerald T., Boucaud D., Okoh J., Tchounwou P. B. 2006; Assessment of individual and combined toxicities of four non-essential metals (As. Cd Hg. Pb.) and in the microtox assay. Int J Environ Res Public Health 3118–120
    [Google Scholar]
  20. Jensen T. E. 1968; Electron microscopy of polyphosphate bodies in a blue-green alga, Nostoc pruniforme . Arch Microbiol 62:144–152
    [Google Scholar]
  21. Jensen T. E., Sicko-Goad L., Ayala R. P. 1977; Phosphate metabolism in blue-green algae. III. The effect of fixation and post-staining on the morphology of polyphosphate bodies in Plectonema boryanum . Cytologia (Tokyo 42:357–369
    [Google Scholar]
  22. Jensen T. E., Baxter M., Rachlin J. W., Jani V. 1982; Uptake of heavy metals by Plectonema boryanum (Cyanophyceae) into cellular components, especially polyphosphate bodies: an X-ray energy dispersive study. Environ Pollut 27:119–127
    [Google Scholar]
  23. Kiran B., Kaushik A., Kaushik C. P. 2008; Metal-salt co-tolerance and metal removal by indigenous cyanobacterial strains. Process Biochem 43:598–604
    [Google Scholar]
  24. Leitão E., Oxelfelt F., Oliveira P., Moradas-Ferreira P., Tamagnini P. 2005; Analysis of the hupSL operon of the nonheterocystous cyanobacterium Lyngbya majuscula CCAP 1446/4: regulation of transcription and expression under a light–dark regime. Appl Environ Microbiol 71:4567–4576
    [Google Scholar]
  25. Lewinson O., Lee A. T., Rees D. C. 2009; A P-type ATPase importer that discriminates between essential and toxic transition metals. Proc Natl Acad Sci U S A 106:4677–4682
    [Google Scholar]
  26. Li P., Harding S. E., Liu Z. 2001; Cyanobacterial exopolysaccharides: their nature and potential biotechnological applications. Biotechnol Genet Eng Rev 18:375–404
    [Google Scholar]
  27. Micheletti E., Colica G., Viti C., Tamagnini P., De Philippis R. 2008a; Selectivity in the heavy metal removal by exopolysaccharide-producing cyanobacteria. J Appl Microbiol 105:88–94
    [Google Scholar]
  28. Micheletti E., Pereira S., Mannelli F., Moradas-Ferreira P., Tamagnini P., De Philippis R. 2008b; Sheathless mutant of the cyanobacterium Gloeothece sp. strain PCC 6909 with increased capacity to remove copper ions from aqueous solutions. Appl Environ Microbiol 74:2797–2804
    [Google Scholar]
  29. Nieboer E., Richardson D. H. S. 1980; The replacement of the nondescript term “heavy metals” by a biologically and chemically significant classification of metal ions. Environ Pollut Ser 1:3–26
    [Google Scholar]
  30. Nies D. H. 1999; Microbial heavy-metal resistance. Appl Microbiol Biotechnol 51:730–750
    [Google Scholar]
  31. Nies D. H. 2003; Eflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiol Rev 27:313–339
    [Google Scholar]
  32. Parker D. L., Mihalick J. E., Plude J. L., Plude M. J., Clark T. P., Egan L., Flom J. J., Rai L. C., Kumar H. D. 2000; Sorption of metals by extracellular polymers from the cyanobacterium Microcystis aeruginosa f. flos-aquae strain C3–40. J Appl Phycol 12:219–224
    [Google Scholar]
  33. Pearson R. G. 1963; Hard and soft acids and bases. J Am Chem Soc 85:3533–3539
    [Google Scholar]
  34. Pearson R. G. 1968; Hard and soft acids and bases, HSAB, part 1: fundamental principles. J Chem Educ 45:581
    [Google Scholar]
  35. Pereira S., Zille A., Micheletti E., Moradas-Ferreira P., De Philippis R., Tamagnini P. 2009; Complexity of cyanobacterial exopolysaccharides: composition, structures, inducing factors, and putative genes involved in their biosynthesis and assembly. FEMS Microbiol Rev 33:917–941
    [Google Scholar]
  36. Pinchasov Y., Berner T., Dubinsky Z. 2006; The effect of lead on photosynthesis, as determined by photoacoustics in Synechococcus leopoliensis (Cyanobacteria. Water Air Soil Pollut 175:117–125
    [Google Scholar]
  37. Pinto E., Sigaud-kutner T. C. S., Leitão M. A. S., Okamoto O. K., Morse D., Colepicolo P. 2003; Heavy metal-induced oxidative stress in algae. J Phycol 39:1008–1018
    [Google Scholar]
  38. Rachlin J. W., Jensen T. E., Baxter M., Jani V. 1982; Utilization of morphometric analysis in evaluating response of Plectonema boryanum (Cyanophyceae) to exposure to eight heavy metals. Arch Environ Contam Toxicol 11:323–333
    [Google Scholar]
  39. Rensing C., Ghosh M., Rosen B. P. 1999; Families of soft-metal-ion-transporting ATPases. J Bacteriol 181:5891–5897
    [Google Scholar]
  40. Rippka R., Deruelles J., Waterbury J. B., Herdman M., Stanier R. Y. 1979; Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111:1–61
    [Google Scholar]
  41. Rosen B. P. 2002; Transport and detoxification systems for transition metals, heavy metals and metalloids in eukaryotic and prokaryotic microbes. Comp Biochem Physiol A Mol Integr Physiol 133:689–693
    [Google Scholar]
  42. Roy S., Ghosh A. N., Thakur A. R. 2008; Uptake of Pb2+ by a cyanobacterium belonging to the genus Synechocystis , isolated from East Kolkata Wetlands. Biometals 21:515–524
    [Google Scholar]
  43. Seabra R., Santos A., Pereira S., Moradas-Ferreira P., Tamagnini P. 2009; Immunolocalization of the uptake hydrogenase in the marine cyanobacterium Lyngbya majuscula CCAP 1446/4 and two Nostoc strains. FEMS Microbiol Lett 292:57–62
    [Google Scholar]
  44. Shcolnick S., Keren N. 2006; Metal homeostasis in cyanobacteria and chloroplasts. Balancing benefits and risks to the photosynthetic apparatus. Plant Physiol 141:805–810
    [Google Scholar]
  45. Singh S., Pradhan S., Rai L. C. 2000; Metal removal from single and multimetallic systems by different biosorbent materials as evaluated by differential pulse anodic stripping voltammetry. Process Biochem 36:175–182
    [Google Scholar]
  46. Singh A., Kumar D., Gaur J. P. 2007; Copper(II) and lead(II) sorption from aqueous solution by non-living Spirogyra neglecta . Bioresour Technol 98:3622–3629
    [Google Scholar]
  47. Stuart R. K., Dupond C. L., Johnson D. A., Paulsen I. T., Palenik B. 2009; Coastal strains of marine Synechococcus species exhibit increased tolerance to copper shock and a distinctive transcriptional response relative to those of open-ocean strains. Appl Environ Microbiol 75:5047–5057
    [Google Scholar]
  48. Sunda W. G., Huntsman S. A. 1998; Interactions among Cu2+, Zn2+, and Mn2+ in controlling cellular Mn, Zn, and growth rate in the coastal alga Chlamydomonas . Limnol Oceanogr 43:1055–1064
    [Google Scholar]
  49. Surosz W., Palinska K. A. 2005; Effects of heavy-metal stress on cyanobacterium Anabaena flos-aquae . Arch Environ Contam Toxicol 48:40–48
    [Google Scholar]
  50. Valls M., de Lorenzo V. 2002; Exploiting the genetic and biochemical capacities of bacteria for the remediation of heavy metal pollution. FEMS Microbiol Rev 26:327–338
    [Google Scholar]
  51. Volesky B., May-Phillips H. A. 1995; Biosorption of heavy metals by Saccharomyces cerevisiae . Appl Microbiol Biotechnol 42:797–806
    [Google Scholar]
  52. Xiong Z.-T. 1998; Lead uptake and effects on seed germination and plant growth in a Pb hyperaccumulator Brassica pekinensis Rupr. Bull Environ Contam Toxicol 60:285–291
    [Google Scholar]
  53. Yu H., Jia S., Dai Y. 2009; Growth characteristics of the cyanobacterium Nostoc flagelliforme in photoautotrophic, mixotrophic and heterotrophic cultivation. J Appl Phycol 21:127–133
    [Google Scholar]
  54. Yu H., Jia S., Dai Y. 2010; Accumulation of exopolysaccharides in liquid suspension culture of Nostoc flagelliforme cells. Appl Biochem Biotechnol 160:552–560
    [Google Scholar]
  55. Zhang Y., Banks C. 2006; A comparison of the properties of polyurethane immobilised Sphagnum moss, seaweed, sunflower waste and maize for the biosorption of Cu, Pb, Zn and Ni in continuous flow packed columns. Water Res 40:788–798
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.041038-0
Loading
/content/journal/micro/10.1099/mic.0.041038-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error