1887

Abstract

We determined a 146 kb contiguous sequence at the 25°–36° region of the chromosome containing the segment. Among the 113 ORFs identified, 33 are already known. Functions were assigned to 38 ORFs by a search of non-redundant protein sequence data banks and those of 16 ORFs were suggested through significant similarity with reported sequences. The amino acid sequences of 13 of the ORFs were similar to proteins of unknown function of and other species. We did not find similarities for 29 ORFs to any known proteins. The 146 kb region is rich in enzymes (35 ORFs) related to the metabolism of low molecular mass compounds and five genes for surfactin production occupy about 26 kb of the region.

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-142-11-3047
1996-11-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/142/11/mic-142-11-3047.html?itemId=/content/journal/micro/10.1099/13500872-142-11-3047&mimeType=html&fmt=ahah

References

  1. Akagawa E., Kurita K., Sugawara T., Nakamura K., Kasahara Y., Ogasawara N., Yamane K. 1995; Determination of a 17484 bp nucleotide sequence around the 39° region of the Bacillus subtilis chromosome and similarity analysis of the products of putative ORFs. Microbiology 141:3241–3245
    [Google Scholar]
  2. Albertini A. M., Caramori T., Henner D., Ferrari E., Galizzi A. 1987; Nucleotide sequence of the outB locus of Bacillus subtilis and regulation of its expression. J Bacteriol 169:1480–1484
    [Google Scholar]
  3. Anagnostopoulos C., Piggot P. J., Hoch J. A. 1993; Thegenetic map of Bacillus subtilis.. In Bacillus subtilis and Other Grampositive Bacteria: Biochemistry, Physiology and Molecular Genetics pp. 425–461 Sonenshein A. L., Hoch J. A., Losick R. Edited by Washington, DC: American Society for Microbiology;
    [Google Scholar]
  4. Cosmina P., Rodriguez F., de Ferra F., Grandi G., Perego M., Venema G., van Sinderen D. 1993; Sequence and analysis of the genetic locus responsible for surfactin synthesis in Bacillus subtilis. Mol Microbiol 8:821–831
    [Google Scholar]
  5. D’Souza C., Nakano M. M., Zuber P. 1994; Identification of comS, a gene of the srfA operon that regulates the establishment of genetic competence in Bacillus subtilis. Proc Natl Acad Sci USA 91:9397–9401
    [Google Scholar]
  6. Dujon B.others 1994; Complete DNA sequence of yeast chromosome XI. Nature 369:371–378
    [Google Scholar]
  7. Fleischman R. D.others 1995; Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269:496–512
    [Google Scholar]
  8. Fujishima Y., Yamane K. 1995; A 10 kb nucleotide sequence at the 5' flanking region (32°) of srfAA of the Bacillus subtilis chromosome. Microbiology 141:277–279
    [Google Scholar]
  9. Fuma S., Fujishima Y., CorbelI N., D’Souza C., Nakano M. M., Zuber P., Yamane K. 1993; Nucleotide sequence of 5' portion of srfA that contains the region required for competence establishment in Bacillus subtilis. Nucleic Acids Res 21:93–97
    [Google Scholar]
  10. Hanlon D. W., Rosario M. M. L., Ordal G. W., Venema G., Van Sinderen D. 1994; Identification of TlpC, a novel 62 kDa MCP- like protein from Bacillus subtilis. Microbiology 140:1847–1854
    [Google Scholar]
  11. Harada S., Yoda K., Mori M., Tanimoto A., Furusato T., Yamane A., Takatsuki A., Yamasaki M., Tamura G. 1988; The gene responsible for tunicamycin resistance, tmrB, in Bacillus subtilis. Agric Biol Chem 52:1785–1789
    [Google Scholar]
  12. Hashiguchi K., Tanimoto A., Nomura S., Yamane K., Yoda K., Harada S., Mori M., Furusato T., Takatsuki A., Yamasaki M., Tamura G. 1986; Amplification of the amyE-tmrB region on the chromosome in tunicamycin-resistant cells of Bacillus subtilis. Mol Gen Genet 204:36–43
    [Google Scholar]
  13. Hediger M. A., Frank G., Zuber H. 1986; The primary structure of the mesophilic lactate dehydrogenase from Bacillus subtilis. Biol Chem Hoppe-Seyler 367:891–903
    [Google Scholar]
  14. Irie R., Fujita Y., Okamoto T. 1993; Cloning and sequencing the gerK spore germination gene of Bacillus subtilis 168. J Gen Appl Microbiol 39:453–456
    [Google Scholar]
  15. Itaya M., Tanaka T. 1991; Complete physical map of the Bacillus subtilis 168 chromosome constructed by a gene-directed mutagenesis method. J Mol Biol 220:631–648
    [Google Scholar]
  16. Kaneko T.others 1996; Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions. DNA Res 3:109–136
    [Google Scholar]
  17. Kempf B., Bremer E. 1995; OpuA, an osmotically regulated binding protein-dependent transport system for the osmoprotectant glycine betaine in Bacillus subtilis. J Biol Chem 270:
    [Google Scholar]
  18. Kempf B., Bremer E. 1996; A novel amidohydrase gene from Bacillus subtilis: cloning, DNA-sequencing analysis and map position of amhX.. FEMS Microbiol 141:129–137
    [Google Scholar]
  19. Lampel K. A., Uratani B., Chaudhry G. R., Ramaley R. F., Rudikoff S. 1986; Characterization of the developmentally regulated Bacillus subtilis glucose dehydrogenase gene. J Bacteriol 166:238–243
    [Google Scholar]
  20. Makino K., Shinagawa H., Amemura M., Nakata A. 1986; Nucleotide sequence of the phoR gene, a regulatory gene for the phosphate regulon of Escherichia coli. J Mol Biol 192:549–556
    [Google Scholar]
  21. Mitsushima K., Takimoto A., Sonoyama T., Yagi S. 1995; Gene cloning, nucleotide sequence, and expression of a cephalosporin C deacetylase from Bacillus subtilis. Appl Environ Microbiol 61:2224–2229
    [Google Scholar]
  22. Murakami Y.others 1995; Analysis of the nucleotide sequence of the chromosome VI from Saccharomyces cerevisiae. Nat Genet 10:261–268
    [Google Scholar]
  23. Murray T., Popham D., Setlow P. 1996; Identification and characterization of pbpC, the gene encoding Bacillus subtilis PBP3. Proceedings of the 12th International Spore Conference.
    [Google Scholar]
  24. Nakane A., Ogawa K., Nakamura K., Yamane K. 1994; Nucleotide sequence of the shikimate kinase gene(arol)of Bacillus subtilis. J Ferment Bioeng 77:312–314
    [Google Scholar]
  25. Nakano M. M., Corbell N., Besson J., Zuber P. 1992; Isolation and characterization of sfp: a gene that functions in the production of lipopeptide biosurfactant, surfactin, in Bacillus subtilis. Mol Gen Genet 232:313–321
    [Google Scholar]
  26. Ogasawara N., Nakai S., Yoshikawa H. 1994; Systematic sequencing of the 180 kilobase region of the Bacillus subtilis chromosome containing the replication origin. DNA Res 1:1–14
    [Google Scholar]
  27. Ogawa K., Akagawa E., Nakamura K., Yamane K. 1995a; Determination of a 21 548 bp nucleotide sequence around the 24° region of the Baciffus subtilis chromosome. Microbiology 141:269–275
    [Google Scholar]
  28. Ogawa K., Akagawa E., Yamane E., Sun Z. -W., LaCelle M., Zuber P., Nakano M. M. 1995b; The nasB operon and nasA gene are required for nitrate/nitrite assimilation in Bacillus subtilis. J Bacteriol 177:1409–1413
    [Google Scholar]
  29. Oliver S.G.s. others 1992; The complete DNA sequence of yeast chromosome III. Nature 357:38–46
    [Google Scholar]
  30. Otozai K., Yamane K. 1985; Instability of a chimeric plasmid containing bacillus subtilis aroI+ tmrB genes, pBR322 and pUBllO, during B. subtilis transformation. Agric Biol Chem 49:351–357
    [Google Scholar]
  31. Perego M., Glaser P., Hoch J. A. 1996; Aspartyl-phosphate phosphatases deactivate the response regulator components of the sporulation signal transduction system in Bacillus subtilis. Mol Microbiol 19:1151–1157
    [Google Scholar]
  32. Rodriguez F., Grandi G. 1995; An operon encoding a novel ABC-type transport system in Bacillus subtilis. Microbiology 141:1781–1784
    [Google Scholar]
  33. Saiki R. K., Sharf S., Faloona F., Mullis K. B., Horn G. T., Erlich H. A., Arnheim N. 1985; Enzymatic amplification of β-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 230:1350–1354
    [Google Scholar]
  34. Saito H., Miura K. 1963; Preparation of transforming deoxy-ribonucleic acid by phenol treatment. Biochim Biophys Acta 72:619–629
    [Google Scholar]
  35. Seki T., Yoshikawa H., Takahashi H., Saito H. 1988; Nucleotide sequence of the Bacillus subtilisphoR gene. J Bacteriol 170:5935–5938
    [Google Scholar]
  36. Triglia T., Peterson M. G., Kemp D. J. 1988; A procedure for in vitro amplification of DNA segments that lie outside the boundaries of known sequences. Nucleic Acids Res 16:8186
    [Google Scholar]
  37. Vosman B., Kuiken G., Kooistra J., Venema G. 1988; Transformation in Bacillus subtilis. involvement of the 17 kilodalton DNA-entry nuclease and the competence specific 18 kilodalton protein. J Bacteriol 170:3703–3710
    [Google Scholar]
  38. Yamazaki H., Ohmura K., Nakayama A., Takeichi Y., Otozai K., Yamasaki M., Tamura H., Yamane K. 1983; α-Amylase genes (amjR2 and amyE) from an α-amylase hyperproducing Bacillus subtilis-. molecular cloning and nucleotide sequence. J Bacteriol 156:327–337
    [Google Scholar]
  39. Yang M., Galizzi A., Henner D. 1983; Nucleotide sequence of the amylase gene from Bacillus subtilis. Nucleic Acids Res 11:237–249
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/13500872-142-11-3047
Loading
/content/journal/micro/10.1099/13500872-142-11-3047
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error