1887

Abstract

The methylotrophic yeast exhibits formaldehyde dehydrogenase activity (FLD, EC 1.2.1.1) during growth on methanol as a sole carbon source. The structural gene, , was cloned from a genomic library of . The 1263 bp gene contained a 123 bp intron and its exon encoded a gene product of 380 amino acids, whose predicted amino acid sequence showed high similarity to the sequences of FLDs from other organisms. The gene was disrupted in the genome by one-step gene disruption. The Δ strain could not grow on methanol as a carbon source under methanol-limited chemostat culture conditions, even with low dilution rates (<005 h), whereas a strain with a disruption in the gene for formate dehydrogenase (FDH; another NADH-generating dehydrogenase involved in the formaldehyde oxidation pathway) could survive. These results indicated that FLD, but not FDH, is essential for growth of on methanol.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-9-2697
2002-09-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/9/1482697a.html?itemId=/content/journal/micro/10.1099/00221287-148-9-2697&mimeType=html&fmt=ahah

References

  1. Anthony C. 1982 The Biochemistry of Methylotrophs London: Academic Press;
    [Google Scholar]
  2. Baerends R. J., Sulter G. J., Jeffries T. W., Cregg J. M., Veenhuis M. 2002; Molecular characterization of the Hansenula polymorpha FLD1 gene encoding formaldehyde dehydrogenase. Yeast 19:37–42 [CrossRef]
    [Google Scholar]
  3. Bradford M. M. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254 [CrossRef]
    [Google Scholar]
  4. Bystrykh L. V., Aminova L. R., Trotsenko Y. A. 1988; Methanol metabolism in mutants of the methylotrophic yeast Hansenula polymorpha . FEMS Microb Lett 51:89–94 [CrossRef]
    [Google Scholar]
  5. Church G. M., Gilbert W. 1984; Genomic sequencing. Proc Natl Acad Sci USA 81:1991–1995 [CrossRef]
    [Google Scholar]
  6. Cryer D. R., Eccleshal R., Murmur J. 1975; Isolation of yeast DNA. Methods Cell Biol 12:39–44
    [Google Scholar]
  7. Davis R. W., Thomas M., Cameron J., John T. P. S., Scherer S., Padgett R. A. 1980; Rapid DNA isolation for enzymatic and hybridization analysis. Methods Enzymol 65:404–411
    [Google Scholar]
  8. Domdey H., Apostol B., Lin R. J., Newman A., Brody E., Abelson J. 1984; Lariat structures are in vivo intermediates in yeast pre-mRNA splicing. Cell 39:611–621 [CrossRef]
    [Google Scholar]
  9. Feldman M. Y. 1973; Reactions of nucleic acids and nucleoproteins with formaldehyde. Prog Nucleic Acids Res Mol Biol 13:1–49
    [Google Scholar]
  10. Grafstrom R. C., Fornace A. J. Jr, Autrup H., Lechner J. F., Harris C. C. 1983; Formaldehyde damage to DNA and inhibition of DNA repair in human bronchial cells. Science 220:216–218 [CrossRef]
    [Google Scholar]
  11. Harms N., Ras J., Reijnders W. N., van Spanning R. J. M., Stouthamer A. H. 1996; S -Formylglutathione hydrolase of Paracoccus denitrificans is homologous to human esterase D: a universal pathway for formaldehyde detoxification?. J Bacteriol 178:6296–6299
    [Google Scholar]
  12. Horiguchi H., Yurimoto H., Kato N., Sakai Y. 2001; Antioxidant system within yeast peroxisome: biochemical and physiological characterization of CbPmp20 in the methylotrophic yeast Candida boidinii . J Biol Chem 276:14279–14288
    [Google Scholar]
  13. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685 [CrossRef]
    [Google Scholar]
  14. Nash T. 1953; The colorimetric estimation of formaldehyde by means of the Hantzsch reaction. Biochem J 55:416–421
    [Google Scholar]
  15. Sakai Y., Tani Y. 1992a; Directed mutagenesis in an asporogenous methylotrophic yeast: cloning, sequencing, and one-step gene disruption of the 3-isopropylmalate dehydrogenase gene ( LEU2) of Candida boidinii to derive doubly auxotrophic marker strains. J Bacteriol 174:5988–5993
    [Google Scholar]
  16. Sakai Y., Tani Y. 1992b; Cloning and sequencing of the alcohol oxidase-encoding gene ( AOD1) from the formaldehyde-producing asporogenous methylotrophic yeast, Candida boidinii S2. Gene 114:67–73 [CrossRef]
    [Google Scholar]
  17. Sakai Y., Kazarimoto T., Tani Y. 1991; Transformation system for an asporogenous methylotrophic yeast, Candida boidinii: cloning of the orotidine-5′-phosphate decarboxylase gene ( URA3 ), isolation of uracil auxotrophic mutants, and use of the mutants for integrative transformation. J Bacteriol 173:7458–7463
    [Google Scholar]
  18. Sakai Y., Goh T. K., Tani Y. 1993; High-frequency transformation of a methylotrophic yeast, Candida boidinii , with autonomously replicating plasmids which are also functional in Saccharomyces cerevisiae . J Bacteriol 175:3556–3562
    [Google Scholar]
  19. Sakai Y., Saigannji A., Yurimoto H., Takabe K., Saiki H., Kato N. 1996; The absence of Pmp47, a putative yeast peroxisomal transporter, causes a defect in transport and folding of a specific matrix enzyme. J Cell Biol 134:37–51 [CrossRef]
    [Google Scholar]
  20. Sakai Y., Murdanoto A. P., Konishi T., Iwamatsu A., Kato N. 1997; Regulation of the formate dehydrogenase gene, FDH1 , in the methylotrophic yeast Candida boidinii and growth characteristics of an FDH1 -disrupted strain on methanol, methylamine, and choline. J Bacteriol 179:4480–4485
    [Google Scholar]
  21. Sakai Y., Nakagawa T., Shimase M., Kato N. 1998; Regulation and the physiological role of the DAS1 gene encoding dihydroxyacetone synthase in the methylotrophic yeast Candida boidinii . J Bacteriol 180:5885–5890
    [Google Scholar]
  22. Sasnauskas K., Jomantiene R., Januska A., Lebediene E., Lebedys J., Janulaitis A. 1992; Cloning and sequencing analysis of a Candida maltosa gene which confers resistance to formaldehyde in Saccharomyces cerevisiae . Gene 122:207–211 [CrossRef]
    [Google Scholar]
  23. Schutte H., Flossdorf J., Sahm H., Kula M.-R. 1976; Purification and properties of formaldehyde dehydrogenase and formate dehydrogenase from Candida boidinii . Eur J Biochem 62:151–160 [CrossRef]
    [Google Scholar]
  24. Shen S., Sulter G., Jeffries T. W., Cregg J. M. 1998; A strong nitrogen source-regulated promoter for controlled expression of foreign genes in the yeast Pichia pastoris . Gene 216:93–102 [CrossRef]
    [Google Scholar]
  25. Sibirny A. A., Ubiyvovk V. M., Gonchar M. V., Titorenko V. I., Voronovsky A. Y., Kapultsevich Y. G., Bliznik K. M. 1990; Reactions of direct formaldehyde oxidation to CO2 are non-essential for energy supply of yeast methylotrophic growth. Arch Microbiol 154:566–575
    [Google Scholar]
  26. Sun H. W., Plapp B. V. 1992; Progressive sequence alignment and molecular evolution of the Zn-containing alcohol dehydrogenase family. J Mol Evol 34:522–535 [CrossRef]
    [Google Scholar]
  27. Tani Y., Sakai Y., Yamada H. 1985; Production of formaldehyde by a mutant of methanol yeast, Candida boidinii S2. J Ferment Technol 63:443–449
    [Google Scholar]
  28. Veenhuis M., van Dijken J. P., Harder W. 1983; The significance of peroxisomes in the metabolism of one-carbon compounds in yeasts. Adv Microb Physiol 24:1–82
    [Google Scholar]
  29. Wehner E. P., Rao E., Brendel M. 1993; Molecular structure and genetic regulation of SFA , a gene responsible for resistance to formaldehyde in Saccharomyces cerevisiae , and characterization of its protein product. Mol Gen Genet 237:351–358
    [Google Scholar]
  30. Yurimoto H., Hasegawa T., Sakai Y., Kato N. 2000a; Physiological role of the d-amino acid oxidase gene, DAO1 , in carbon and nitrogen metabolism in the methylotrophic yeast Candida boidinii . Yeast 16:1217–1227 [CrossRef]
    [Google Scholar]
  31. Yurimoto H., Komeda T., Lim C. R., Nakagawa T., Kondo K., Kato N., Sakai Y. 2000b Regulation and evaluation of five methanol-inducible promoters in the methylotrophic yeast Candida boidinii Biochim Biophys Acta; 149356–63 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-9-2697
Loading
/content/journal/micro/10.1099/00221287-148-9-2697
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error