1887

Abstract

The identification and molecular characterization of a previously unidentified lipase, , from the human cutaneous commensal is reported. A lipase-GehC-deficient but otherwise isogenic mutant of 9 was constructed by allele replacement. However, the mutant was found to retain 50% of the wild-type lipase activity in liquid culture. Rescreening of a genomic library revealed the presence of a second lipase gene, , which was subsequently mapped and sequenced. In common with other staphylococcal lipases, GehD appeared to be translated as a 650–700 amino acid precursor which is processed post-translationally to an extracellular mature lipase of 360 amino acids with a size of approximately 45 kDa. Comparison of the amino acid sequence of GehD with those of other staphylococcal lipases revealed a high level of conservation between the mature lipase domains of different species. By hybridization studies, both and genes were found to be present in isolates from both clinical and non-clinical backgrounds, but neither hybridized to DNA isolated from other staphylococcal strains. Construction of a phylogenetic tree and calculation of amino acid sequence homologies between mature lipases, however, suggested that the lipases of may be more closely related to those of than to each other.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-146-6-1419
2000-06-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/146/6/1461419a.html?itemId=/content/journal/micro/10.1099/00221287-146-6-1419&mimeType=html&fmt=ahah

References

  1. Appleyard K. K. 1954; Segregation of new lysogenic types during growth of a doubly lysogenic strain derived from Escherichia coli K12. Genetics 39:440–445
    [Google Scholar]
  2. Augustin J., Götz F. 1990; Transformation of Staphylococcus epidermidis and other staphylococcal species with plasmid DNA by electroporation. FEMS Microbiol Lett 66:203–208 [CrossRef]
    [Google Scholar]
  3. Brady L., Brzozowski A. M., Derewenda Z. S.9 other authors 1990; A serine protease triad forms the catalytic centre of a triacylglycerol lipase. Nature 343:767–770 [CrossRef]
    [Google Scholar]
  4. Chang S., Cohen S. N. 1979; High frequency transformation of Bacillus subtilis protoplasts by plasmid DNA. Mol Gen Genet 168:111–119 [CrossRef]
    [Google Scholar]
  5. Farrell A. M., Foster T. J., Holland K. T. 1993; Molecular analysis and expression of the lipase of Staphylococcus epidermidis. J Gen Microbiol 139:267–277 [CrossRef]
    [Google Scholar]
  6. Foster T. J. 1998; Molecular genetic analysis of staphylococcal virulence. Methods Microbiol 27:433–454
    [Google Scholar]
  7. Gribbon E. M., Cunliffe W. J., Holland K. T. 1993; Interaction of Propionibacterium acnes with skin lipids in vitro. J Gen Microbiol 139:1745–1751 [CrossRef]
    [Google Scholar]
  8. Gryczan T. J., Hahn J., Contente S., Dubnau D. 1982; Replication and incompatibility properties of plasmid pE194 in Bacillus subtilis. J Bacteriol 152:722–735
    [Google Scholar]
  9. Hedström S. Å. . 1975; Lipolytic activity of Staphylococcus aureus strains from cases of human chronic osteomyelitis and other infections. Acta Pathol Microbiol Scand Sect B Microbiol 83:285–292
    [Google Scholar]
  10. Hedström S. Å, Nilsson-Ehle P. 1983; Triacylglycerol lipolysis by Staphylococcus aureus strains from furunculosis, pyomyosititis, impetigo and osteomyelitis. Acta Pathol Microbiol Scand Sect B Microbiol 91:169–173
    [Google Scholar]
  11. Hill P. J., Cockayne C., Landers P., Morrissey J. A., Sims C. M., Williams P. 1998; SirR, a novel iron-dependent repressor in Staphylococcus epidermidis. Infect Immun 66:4123–4129
    [Google Scholar]
  12. Huebner J., Goldmann G. A. 1999; Coagulase-negative staphylococci: role as pathogens. Annu Rev Med 50:223–236 [CrossRef]
    [Google Scholar]
  13. Ingham E., Holland K. T., Gowland G., Cunliffe W. J. 1981; Partial purification and characterization of lipase (EC 3.1.1.3) from Propionibacterium acnes. J Gen Microbiol 124:393–401
    [Google Scholar]
  14. Kreiswirth B. N., Löfdahl S., Betley M. J., O’Reilly M., Schlievert P. M., Bergdoll M. S., Novick R. P. 1983; The toxic shock syndrome exotoxin structural gene is not detectably transmitted by a prophage. Nature 305:680–685
    [Google Scholar]
  15. Liebl W., Götz F. 1986; Studies on lipase directed export of Escherichia coli beta-lactamase in Staphylococcus carnosus. Mol Gen Genet 204:166–173 [CrossRef]
    [Google Scholar]
  16. Löfdahl S., Guss B., Uhlén M., Philipson L., Lindber M. 1983; Gene for staphylococcal protein A. Proc Natl Acad Sci USA 80:697–701 [CrossRef]
    [Google Scholar]
  17. Lowe A. M., Beattie D. T., Deresiewicz R. L. 1998; Identification of novel staphylococcal virulence genes by in vivo expression technology. Mol Microbiol 27:967–976 [CrossRef]
    [Google Scholar]
  18. McLaughlin J. R., Murry C. L., Rabinowitz J. C. 1981; Unique features in the ribosome binding site sequence of the Gram-positive Staphylococcus aureus β-lactamase gene. J Biol Chem 256:11283–11291
    [Google Scholar]
  19. Marples R. R., Downing D. T., Kligman A. M. 1971; Control of free fatty acids in human surface lipids by Corynebacterium acnes. J Investig Dermatol 56:127–131 [CrossRef]
    [Google Scholar]
  20. Nicolaides N. 1974; Skin lipids: their biochemical uniqueness. Science 186:19–26 [CrossRef]
    [Google Scholar]
  21. Noble M. E. M., Cleasby A., Johnson L. N., Egmond M. R., Frenken L. G. J. 1994; Analysis of the structure of Pseudomonas glumae lipase. Protein Eng 7:559–562 [CrossRef]
    [Google Scholar]
  22. O’Reilly M., de Azavedo J. C., Kennedy S., Foster T. J. 1986; Inactivation of the alpha-haemolysin gene of Staphylococcus aureus 8325-4 by site-directed mutagenesis and studies on the expression of its haemolysins. Microb Pathog 1:125–138 [CrossRef]
    [Google Scholar]
  23. Page R. D. M. 1996; TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358
    [Google Scholar]
  24. Perlman D., Halvorson H. O. 1983; A putative signal peptidase recognition site and sequence in eukaryotic and prokaryotic signal peptides. J Mol Biol 167:391–409 [CrossRef]
    [Google Scholar]
  25. Rollof J., Hedström S. A., Nilsson-Ehle P. 1987; Lipolytic activity of Staphylococcus aureus strains from disseminated and localized infections. Acta Pathol Microbiol Immunol Scand Sect B Microbiol 95:109–113
    [Google Scholar]
  26. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  27. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467 [CrossRef]
    [Google Scholar]
  28. Tatusova T. A., Madden T. L. 1999; blast 2 sequences – a new tool for comparing protein and nucleotide sequences. FEMS Microbiol Lett 174:247–250 [CrossRef]
    [Google Scholar]
  29. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
  30. Williamson P., Kligman A. M. 1965; A new method for the quantitative investigation of cutaneous bacteria. J Investig Dermatol 45:498–530 [CrossRef]
    [Google Scholar]
  31. Wilson C. R., Skinner S. E., Shaw W. V. 1981; Analysis of two chloramphenicol resistance plasmids from Staphylococcus aureus: insertional inactivation of Cm resistance, mapping of restriction sites and construction of cloning vehicles. Plasmid 5:245–258 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-146-6-1419
Loading
/content/journal/micro/10.1099/00221287-146-6-1419
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error