1887

Abstract

The cloning, using a PCR approach, of genes from both and encoding an acyl-CoA dehydrogenase (AcdH), putatively involved in the catabolism of branched-chain amino acids, is reported. The deduced amino acid sequences of both genes have a high similarity to prokaryotic and eukaryotic short-chain acyl-CoA dehydrogenases. When the and acyl-CoA dehydrogenase genes () were expressed in , each of the AcdH flavoproteins was able to oxidize the branched-chain acyl-CoA derivatives isobutyryl-CoA, isovaleryl-CoA and cyclohexylcarbonyl-CoA, as well as the short straight-chain acyl-CoAs -butyryl-CoA and -valeryl-CoA . NMR spectral data confirmed that the oxidized product of isobutyryl-CoA is methacrylyl-CoA, which is the expected product at the acyl-CoA dehydrogenase step in the catabolism of valine in streptomycetes. Disruption of the produced a mutant unable to grow on solid minimal medium containing valine, isoleucine or leucine as sole carbon sources. Feeding studies with C triple-labelled isobutyrate revealed a significant decrease in the incorporation of label into the methylmalonyl-CoA-derived positions of avermectin in the mutant. In contrast the mutation did not affect incorporation into the malonyl-CoA-derived positions of avermectin. These results are consistent with the gene encoding an acyl-CoA dehydrogenase with a broad substrate specificity that has a role in the catabolism of branched-chain amino acids in and .

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-145-9-2323
1999-09-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/145/9/1452323a.html?itemId=/content/journal/micro/10.1099/00221287-145-9-2323&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z, Miller W., Lipman D. J. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 [CrossRef]
    [Google Scholar]
  2. Anderson D. H., Rodwell V. W. 1989; Nucleotide sequence and expression in Escherichia coli of the 3-hydroxy-3-methylglutaryl coenzyme A lyase gene of Pseudomonas mevalonii.. J Bacteriol 171:6468–6472
    [Google Scholar]
  3. Anzai H., Kumada Y., Hara O., Murakami T., Itoh R., Takano E., Imai S., Satoh A., Nagaoka K. 1988; Replacement of Streptomyces hygroscopicus genomic segments with in vitro altered DNA sequences. J Antibiot 41:226–233 [CrossRef]
    [Google Scholar]
  4. Aoyama T., Ueno I., Kamijo T., Hashimoto T. 1994; Rat very-long-chain acyl-CoA dehydrogenase, a novel mitochondrial acyl-CoA dehydrogenase gene product, is a rate-limiting enzyme in long-chain fatty acid β-oxidation. cDNA and deduced amino acid sequence and distinct specificities of the cDNA-expressed protein. J Biol Chem 269:19088–19094
    [Google Scholar]
  5. Bibb M. J., Findlay P. R., Johnson M. W. 1984; The relationship between base composition and codon usage in bacterial genes and its use for the simple and reliable identification of protein coding sequences. Gene 30:157–166 [CrossRef]
    [Google Scholar]
  6. Bibb M. J., White J., Ward J. M., Janssen G. R. 1994; The mRNA for the 23S rRNA methylase encoded by the ermE gene of Saccharopolyspora erythraea is translated in the absence of a conventional ribosome-binding site. Mol Microbiol 14:533–545 [CrossRef]
    [Google Scholar]
  7. Birch A. W., Cullum J. 1985; Temperature-sensitive mutants of the Streptomyces plasmid pIJ702. J Gen Microbiol 131:1299–1303
    [Google Scholar]
  8. Boynton Z. L., Bennett G. N., Rudolph F. B. 1996; Cloning, sequencing, and expression of clustered genes encoding β-hydroxybutyryl-coenzyme A (CoA) dehydrogenase, crotonase, and butyryl-CoA dehydrogenase from Clostridium acetobutylicum ATCC 824. J Bacteriol 178:3015–3024
    [Google Scholar]
  9. Bradford M. M. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254 [CrossRef]
    [Google Scholar]
  10. Bryan E. M., Beall B. W., Moran C. P. Jr 1996; A σE-dependent operon subject to catabolite repression during sporulation in Bacillus subtilis.. J Bacteriol 178:4778–4786
    [Google Scholar]
  11. Burg R. W., Miller B. M., Baker E. E.12 other authors 1979; Avermectins, new family of potent anthelmintic agents: producing organism and fermentation. Antimicrob Agents Chemother 15:361–367 [CrossRef]
    [Google Scholar]
  12. Denoya C. D., Trevisan A. R., Zorzopulos J., Woloj M., Rubeglio E. 1985; Diversity of plasmid profiles in multiply resistant Klebsiella pneumoniae strains isolated from a single nosocomial environment with a strong antibiotic selection pressure. Microbios Lett 29:87–93
    [Google Scholar]
  13. Denoya C. D., Skinner D. D., Morgenstern M. R. 1994; A Streptomyces avermitilis gene encoding a 4-hydroxyphenylpyruvic acid dioxygenase-like protein that directs the production of homogentisic acid and an ochronotic pigment in Escherichia coli.. J Bacteriol 176:5312–5319
    [Google Scholar]
  14. Denoya C. D., Fedechko R. W., Hafner E. W., McArthur H. A. I., Morgenstern M. R., Skinner D. D., Stutzman-Engwall K., Wax R. G., Wernau W. C. 1995; A second branched-chain α-keto acid dehydrogenase gene cluster (bkdFGH) from Streptomyces avermitilis: its relationship to avermectin biosynthesis and the construction of a bkdF mutant suitable for the production of novel antiparasitic avermectins. J Bacteriol 177:3504–3511
    [Google Scholar]
  15. Denoya C. D., Skinner D. D., Fedechko R. W., McArthur H. A. I. 1996; Genetic manipulations of the branched-chain fatty acid supply for the biosynthesis of avermectins in Streptomyces avermitilis. Abstracts of The Sixth Conference on the Genetics and Molecular Biology of Industrial Microorganisms (GMBIM), P60American Society for Microbiology
    [Google Scholar]
  16. Devereux J., Haeberli P., Smithies O. 1984; A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res 12:387–395 [CrossRef]
    [Google Scholar]
  17. Engel P. C. 1981; Butyryl-CoA dehydrogenase from Megasphaera elsdenii.. Methods Enzymol 71:359–366
    [Google Scholar]
  18. Goodwin G. W., Rougraff P. M., Davis E. J., Harris R. A. 1989; Purification and characterization of methylmalonate-semialdehyde dehydrogenase from rat liver: identity to malonate-semialdehyde dehydrogenase. J Biol Chem 264:14965–14971
    [Google Scholar]
  19. Hall C. L. 1978; Acyl-CoA dehydrogenases and electron transferring flavoprotein. Methods Enzymol 53:502–518
    [Google Scholar]
  20. Han L., Reynolds K. A. 1997; A novel alternate anaplerotic pathway to the glyoxylate cycle in streptomycetes. J Bacteriol 179:5157–5164
    [Google Scholar]
  21. Hodgson D. A., Chater K. F. 1981; A chromosomal locus controlling extracellular agarase production by Streptomyces coelicolor A3(2) and its inactivation by chromosomal integration of plasmid SCP1. J Gen Microbiol 124:339–348
    [Google Scholar]
  22. Hopwood D. A., Bibb M. J., Chater K. F.7 other authors 1985 Genetic Manipulation of Streptomyces: a Laboratory Manual Norwich: John Innes Foundation;
    [Google Scholar]
  23. Ikeda Y., Dabrowski C., Tanaka K. 1983; Separation and properties of five distinct acyl-CoA dehydrogenases from rat liver mitochondria. J Biol Chem 258:1066–1076
    [Google Scholar]
  24. Kadokami Y., Lewis R. V. 1994; Repeated PCR of a gel band can be used to obtain a single PCR band. BioTechniques 17:438
    [Google Scholar]
  25. Kelly C. L., Hinsdale M. E., Wood P. A. 1993; Cloning and characterization of the mouse short-chain acyl-CoA dehydrogenase cDNA. Genomics 18:137–140 [CrossRef]
    [Google Scholar]
  26. Lebrihi A., Lamsaif D., Lefebvre G., Germain P. 1992; Effect of ammonium ions on spiramycin biosynthesis in Streptomyces ambofaciens.. Appl Microbiol Biotechnol 37:382–387 [CrossRef]
    [Google Scholar]
  27. Massey L. M., Sokatch J. R., Conrad R. S. 1976; Branched-chain amino acid catabolism in bacteria. Bacteriol Rev 40:42–54
    [Google Scholar]
  28. Matsubara Y., Indo Y., Naito E., Ozasa H., Glassberg R., Vockley J., Ikeda Y., Kraus J., Tanaka K. 1989; Molecular cloning and nucleotide sequence of cDNAs encoding the precursors of rat long chain acyl-coenzyme A, short chain acyl-coenzyme A, and isovaleryl-coenzyme A dehydrogenases. Sequence homology of four enzymes of the acyl-CoA dehydrogenase family. J Biol Chem 264:16321–16331
    [Google Scholar]
  29. Morelle G. 1988; A plasmid extraction procedure on a miniprep-scale. Focus 11:7–8
    [Google Scholar]
  30. Naito E., Ozasa H., Ikeda Y., Tanaka K. 1989; Molecular cloning and nucleotide sequence of complementary DNAs encoding human short chain acyl-coenzyme A dehydrogenase and the study of the molecular basis of human short chain acyl-coenzyme A dehydrogenase deficiency. J Clin Investig 83:1605–1613 [CrossRef]
    [Google Scholar]
  31. Norman E., De Smet K. A., Stoker N. G., Ratledge C., Wheeler P. R., Dale J. W. 1994; Lipid synthesis in mycobacteria: characterization of the biotin carboxyl carrier protein genes from Mycobacterium leprae and M. tuberculosis.. J Bacteriol 176:2525–2531
    [Google Scholar]
  32. Omura S., Tsuzuki K., Tanaka Y., Sakakibara H., Aizawa M., Lukacs G. 1983; Valine as a precursor of the n-butyrate unit in the biosynthesis of macrolide aglycones. J Antibiot 36:614–616 [CrossRef]
    [Google Scholar]
  33. Patel S. S., Walt D. R. 1987; Substrate specificity of acetyl coenzyme A synthetase. J Biol Chem 262:7132–7134
    [Google Scholar]
  34. Philipp W. J., Poulet S., Eiglmeier K.7 other authors 1996; An integrated map of the genome of the tubercle bacillus, Mycobacterium tuberculosis H37Rv, and comparison with. Mycobacterium leprae. Proc Natl Acad Sci USA 93:3132–3137 [CrossRef]
    [Google Scholar]
  35. Reynolds K. A., O’Hagen D, Gani D., Robinson J. A. 1988; Butyrate metabolism in streptomycetes. Characterization of an intramolecular vicinal interchange rearrangement linking isobutyrate and butyrate in Streptomyces cinnamonensis.. J Chem Soc Perkin Trans I 1988:3195–3208
    [Google Scholar]
  36. Reynolds K. A., Wang P., Fox K. M., Lam S., Speedie M. K., Floss H. G. 1992; Purification and characterization of a novel enoyl coenzyme A reductase from Streptomyces collinus.. J Bacteriol 174:3850–3854
    [Google Scholar]
  37. ozen R., Vockley J., Zhou L.7 other authors 1994; Isolation and expression of a cDNA encoding the precursor for a novel member (ACADSB) of the acyl-CoA dehydrogenase gene family. Genomics 24:280–287 [CrossRef]
    [Google Scholar]
  38. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  39. Sherman M. M., Yue S., Hutchinson C. R. 1986; Biosynthesis of lasalocid A. Metabolic interrelationships of carboxylic acid precursors and polyether antibiotics. J Antibiot 39:1135–1143 [CrossRef]
    [Google Scholar]
  40. Skinner D. D., Denoya C. D. 1993; A simple DNA polymerase chain reaction method to locate and define orientation of specific sequences in cloned bacterial genomic fragments. Microbios 75:125–129
    [Google Scholar]
  41. Skinner D. D., Morgenstern M. R., Fedechko R. W., Denoya C. D. 1995; Cloning and sequencing of a cluster of genes encoding branched-chain α-keto acid dehydrogenase from Streptomyces avermitilis and the production of a functional E1[αβ] component in Escherichia coli.. J Bacteriol 177:183–190
    [Google Scholar]
  42. Sommer R., Tautz D. 1989; Minimal homology requirements for PCR primers. Nucleic Acids Res 17:6749 [CrossRef]
    [Google Scholar]
  43. Sood G. R., Ashworth D. M., Ajaz A. A., Robinson J. A. 1988; Biosynthesis of the polyether antibiotic monensin A. Results from the incorporation of labeled acetate and propionate as a probe of the carbon chain assembly process. J Chem Soc Perkin Trans I 1988:3183–3194
    [Google Scholar]
  44. Steele M. I., Lorenz D., Hatter K., Park A., Sokatch J. R. 1992; Characterization of the mmsAB operon of Pseudomonas aeruginosa PAO encoding methylmalonate semialdehyde dehydrogenase and 3-hydroxyisobutyrate dehydrogenase. J Biol Chem 267:13585–13592
    [Google Scholar]
  45. Stutzman-Engwall K. J., Otten S. L., Hutchinson C. R. 1992; Regulation of secondary metabolism in Streptomyces spp. and the overproduction of daunorubicin in Streptomyces peucetius.. J Bacteriol 174:144–154
    [Google Scholar]
  46. Sykes P. J., Burns G., Menard J., Hatter K., Sokatch J. R. 1987; Molecular cloning of genes encoding branched-chain keto acid dehydrogenase of Pseudomonas putida.. J Bacteriol 169:1619–1625
    [Google Scholar]
  47. Tabor S. 1990; Expression using the T7 RNA polymerase/promoter system. In Current Protocols in Molecular Biology pp 16.2.1–16.2.11Edited by Ausubel F. A., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K. New York: Greene Publishing and Wiley Interscience;
    [Google Scholar]
  48. Tang L., Hutchinson C. R. 1993; Sequence, transcriptional and functional analysis of the valine (branched-chain amino acid) dehydrogenase gene of Streptomyces coelicolor.. J Bacteriol 175:4176–4185
    [Google Scholar]
  49. Tang L., Zhang Y.-X., Hutchinson C. R. 1994; Amino acid catabolism and antibiotic synthesis: valine is a source of precursors for macrolide biosynthesis in Streptomyces ambofaciens and Streptomyces fradiae.. J Bacteriol 176:6107–6119
    [Google Scholar]
  50. Tosato V., Albertini A. M., Zotti M., Sonda S., Bruschi C. V. 1997; Sequence completion, identification and definition of the fengycin operon in Bacillus subtilis 168. Microbiology 143:3443–3450 [CrossRef]
    [Google Scholar]
  51. Wexler I. D., Hemalatha S. G., Patel M. S. 1991; Sequence conservation in the α and β subunits of pyruvate dehydrogenase and its similarity to branched-chain α-keto acid dehydrogenase. FEBS Lett 282:209–213 [CrossRef]
    [Google Scholar]
  52. Willard J., Vicanek C., Battaile K., Van Veldhoven P., Fauq A, Rozen R., Vockley J. 1996; Cloning of a cDNA for short/branched chain acyl-Coenzyme A dehydrogenase from rat and characterization of its tissue expression and substrate specificity. Arch Biochem Biophys 331:127–133 [CrossRef]
    [Google Scholar]
  53. Wolf D. A., Akers H. A. 1986; Uncertainties remain in the catabolism of valine. Trends Biochem Sci 11:390–392 [CrossRef]
    [Google Scholar]
  54. Yanisch-Perron C, Vieira J., Messing J. 1985; Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33:103–119 [CrossRef]
    [Google Scholar]
  55. Zhang Y.-X, Tang L., Hutchinson C. R. 1996; Cloning and characterization of a homolog of the mmsA gene encoding methylmalonate-semialdehyde dehydrogenase from Streptomyces coelicolor.. J Bacteriol 178:490–495
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-145-9-2323
Loading
/content/journal/micro/10.1099/00221287-145-9-2323
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error