1887

Abstract

The yeast gene encodes a presumed protein kinase. The gene is essential for manifestation of resistance to the antibiotic polymyxin B. Deletion of enables a null mutant to grow on nonfermentable carbon sources; overexpression of enhances viability of a mutant. Overexpression of also diminishes cellular response to mating pheromone MFα. These results suggest that the and genes affect a common pathway that may communicate with the pheromone response pathway. In addition, disruption of renders cells sensitive to high osmolarity: exposure to 0.9 M-NaCl causes growth arrest, appearance of bizarre morphological forms, and eventual death. A mutation suppressing deletion has been found. That mutation restores full polymyxin B resistance but only partially corrects the osmotic sensitivity defect. These observations indicate that is involved in diverse physiological pathways in yeast.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-138-11-2425
1992-11-01
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/138/11/mic-138-11-2425.html?itemId=/content/journal/micro/10.1099/00221287-138-11-2425&mimeType=html&fmt=ahah

References

  1. Adams A. E. M., Pringle J. R. 1991; Staining of actin with fluorochrome-conjugated phalloidin. Methods in Enzymology 194:729–731
    [Google Scholar]
  2. Amir S., Shechter Y. 1985; Polymyxin Bis a potent inhibitor of insulin hypoglycemia in mice. European Journal of Pharmacology 110:283–285
    [Google Scholar]
  3. Amir S., Sasson S., Kaiser N., Meyerovitch J., Shechter Y. 1987; Polymyxin B is an inhibitor of insulin-induced hypoglycemia in the whole animal model. Journal of Biological Chemistry 262:6663–6667
    [Google Scholar]
  4. Arkinstall S. J., Papasavvas S. G., Payton M.A. 1991; Yeasta-mating factor receptor-linked G-protein signal transduction suppresses Ras-dependent activity. FEBS Letters 284:123–128
    [Google Scholar]
  5. Bearer E. L., Friend D. S. 1980; Anionic lipid domains: correlation with functional topography in a mammalian cell membrane. Proceedings of the National Academy of Sciences of the United States of America 776601–6605
    [Google Scholar]
  6. Birnbauer L., Abramowitz J., Yatani A., Okabe K., Mattera R., Graf R., Sanford J., Codina J., Brown A. M. 1990; Roles of G proteins in coupling of receptors to ionic channels and other effector systems. CRC Critical Reviews in Biochemistry and Molecular Biology 25:225–244
    [Google Scholar]
  7. Blumer K. J., Thorner J. 1991; Receptor-G protein signaling in yeast. Annual Review of Physiology 53:37–57
    [Google Scholar]
  8. Bogusla Wski G. 1985; Effects of polymyxin B sulfate and polymyxin B nonapeptide on growth and permeability of the yeast Saccharomyces cerevisiae. Molecular and General Genetics 199:401–405
    [Google Scholar]
  9. Boguslawski G. 1986; Polymyxin B nonapeptide inhibits mating in Saccharomyces cerevisiae. Antimicrobial Agents and Chemotherapy 29:330–332
    [Google Scholar]
  10. Boguslawski G., POLAZZI J.O. 1987; Complete nucleotide sequence of a gene conferring polymyxin B resistance on yeast: similarity of the predicted polypeptide to protein kinases. Proceedings of the National Academy of Sciences of the United States of America 845848–5852
    [Google Scholar]
  11. Brazil O. V., Fontana M. D., Pavani N.J.P. 1989; Effect of 4-aminopyridine on the post-synaptic action of polymyxin B. European Journal of Pharmacology 159:47–51
    [Google Scholar]
  12. Breviario D., Hinnebusch A., Cannon J. F., Tatchell K., Dhar R. 1986; Carbon source regulation of RASJ expression in Saccharomyces cerevisiae and the phenotypes of ras2- cells. Proceedings of the National Academy of Sciences of the United States of America 834152–4156
    [Google Scholar]
  13. Brown D. R., Taylor P. 1983; The influence of antibiotics on agonist occupation and functional states of the nicotinic acetylcholine receptor. Molecular Pharmacology 23:8–16
    [Google Scholar]
  14. Cannon J. F., Gibbs J. B., Tatchell K. 1986; Suppressors of the RAS2 mutations of Saccharomyces cerevisiae. Genetics 113:247–264
    [Google Scholar]
  15. Colin C., Papageorge A. G., Sakakibara M., Huddie P. L., Lowy D.R., Alkon D. L. 1990; Early regulation of membrane excitability by ras oncogene proteins. Biophysical Journal 58:785–790
    [Google Scholar]
  16. Fedor-Chaiken M., Deschenes R. J., Broach J. 1990; SRV2, a gene required for RAS activation of adenylate cyclase in yeast. Cell 61:329–340
    [Google Scholar]
  17. Field J., Vojtek A., Ballester R., Bolger C., Colicelli J., Ferguson K., Gerst J., Kataoka T., Michaeli T., Powers S., Riggs M., Rodgers L., Wieland I., Wheland B., Wigler M. 1990a; Cloning and characterization of CAP, the S. cerevisiae gene encoding the 70 kD adenylyl cyclase-associated protein. Cell 61:319–327
    [Google Scholar]
  18. Field J., Xu H.-P., Michaeli T., Ballester R., Sass P., Wigler M., Colicelli J. 1990b; Mutations of the adenylyl cyclase that block RAS function in Saccharomyces cerevisiae. Science 241:464–467
    [Google Scholar]
  19. Garrett S., Broach J. 1989; Loss of Ras activity in Saccharomyces cerevisiae is suppressed by disruptions of a new kinase gene, YAK1, whose product may act downstream of the cAMP-dependent protein kinase. Genes & Development 3:1336–1348
    [Google Scholar]
  20. Hanks S. K., Quinn A. R., Hunter T. 1988; The protein kinase family: conserved features and deduced phylogeny of the catalytic domains. Science 241:42–52
    [Google Scholar]
  21. Kubesh P., Boggs J., Luciano L., Maass G., Tummler B. 1987; Interaction of polymyxin B nonapeptide with anionic phospholipids. Biochemistry 26:2139–2149
    [Google Scholar]
  22. Mitts M. R., Bradshaw-Rouse J., Heideman W. 1992; Interactions between adenylate cyclase and the yeast GTPaseactivating protein IRAl. Molecular and Cellular Biology 11:4591–4598
    [Google Scholar]
  23. Rane S. G. 1991; A Caz+-activated K+ current in ras-transformed fibroblasts is absent from nontransformed cells. American Journal of Physiology 260:C104–C112
    [Google Scholar]
  24. Rudy B. 1988; Diversity and ubiquity of K channels. Neuroscience 25:729–749
    [Google Scholar]
  25. Schultz J.E., Klumpp S., Benz R., Schurhoff-Goetters W. J. C., Schmid A. 1992; Regulation of adenylyl cyclase from Paramecium by an intrinsic potassium conductance. Science 255:600–603
    [Google Scholar]
  26. Sherman F., Fink G. R., Hicks J. B. 1983 Methods in Yeast Genetics. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  27. Singh Y. N., Marshall I. G., Harvey A. L. 1980; The mechanism of the muscle paralyzing actions of antibiotics, and their interaction with neuromuscular blocking agents. Reviews in Drug Metabolism and Drug Interactions 3:129–153
    [Google Scholar]
  28. Storm D. E., Rosenthal K. S., Swanson P. E. 1977; Polymyxin and related peptide antibiotics. Annual Review of Biochemistry 46:732–766
    [Google Scholar]
  29. Teague M. A., Chaleff D. T., Errede B. 1986; Nucleotide sequence of the yeast regulatory gene STE7 predicts a protein homologous to protein kinases. Proceedings of the National Academy of Sciences of the United States of America 837371–7375
    [Google Scholar]
  30. Toda T., Uno I., Ishikawa T., Powers S., Kataoka T., Broek D., Cameron S., Broach J., Matsumoto K., Wigler M. 1985; In yeast, RAS proteins are controlling elements of adenylate cyclase. Cell 40:27–36
    [Google Scholar]
  31. Truehart J., Boeke J. D., Fink G. R. 1987; Two genes required for cell fusion during yeast conjugation: evidence for a pheromoneinduced surface protein. Molecular and Cellular Biology 1:2316–2328
    [Google Scholar]
  32. Varecka L., Peterajova E., Pogady J. 1987; Polymyxin B, a novel inhibitor of red cell Ca2+-activated K+ channel. FEBS Letters 225:173–177
    [Google Scholar]
  33. Vojtek A., Haarer B., Field J., Gerst J., Pollard T. D., Brown S., Wigler M. 1991; Evidence for a functional link between profilin and CAP in the yeast S. cerevisiae. Cell 66:497–505
    [Google Scholar]
  34. Weik R., Lonnendonker U. 1990; Polymyxin B as a highly effective gating modifier of high-conductance Ca2+-activated K+ channels in mouse skeletal muscle. Pflugers Archiv 415:671–677
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-138-11-2425
Loading
/content/journal/micro/10.1099/00221287-138-11-2425
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error