1887

Abstract

Polyomavirus mutants E, Q and H, expressing non-myristylated VP2, were generated by replacing the N-terminal glycine residue with glutamic acid, glutamine or histidine, respectively. Viruses mutated in either VP2 or VP3 translation initiation codons were also prepared. All mutated genomes, when transfected into murine host cells, gave rise to viral particles. Infectivity of VP2 and VP3 viruses, as measured by the number of cells expressing viral antigens, was dramatically diminished, indicative of defects in the early stages of infection. In contrast, the absence of a myristyl moiety on VP2 did not substantially affect the early steps of virus infection. No differences in numbers of cells expressing early or late viral antigens were observed between wild-type (wt) and E or Q myr viruses during the course of a life cycle. Furthermore, no delay in virus DNA replication was detected. However, when cells were left for longer in culture, the number of infected cells, measured by typical virus bursts, was much lower when mutant rather than wt genomes were used., cell fractionation studies revealed differences in the interaction of viral particles with host cell structures. The infectivity of mutants was affected not only by loss of the myristyl group on VP2, but also, and to a greater extent, by alterations of the N-terminal amino acid composition.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-83-9-2309
2002-09-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/jgv/83/9/0832309a.html?itemId=/content/journal/jgv/10.1099/0022-1317-83-9-2309&mimeType=html&fmt=ahah

References

  1. An K., Gillock E. T., Sweat J. A., Reeves W. M., Consigli R. A. 1999; Use of the baculovirus system to assemble polyomavirus capsid-like particles with different polyomavirus structural proteins: analysis of the recombinant assembled capsid-like particles. Journal of General Virology 80:1009–1016
    [Google Scholar]
  2. Ansardi D. C., Porter D. C., Morrow C. D. 1992; Myristylation of poliovirus capsid precursor P1 is required for assembly of subviral particles. Journal of Virology 66:4556–4563
    [Google Scholar]
  3. Bachmair A., Finley D., Varshavsky A. 1986; In vivo half-life of a protein is a function of its amino-terminal residue. Science 234:179–186
    [Google Scholar]
  4. Barouch D. H., Harrison S. C. 1994; Interactions among the major and minor coat proteins of polyomavirus. Journal of Virology 68:3982–3989
    [Google Scholar]
  5. Bolen J. B., Anders D. G., Trempy J., Consigli R. A. 1981; Differences in the subpopulations of the structural proteins of polyoma virions and capsids: biological functions of the multiple VP1 species. Journal of Virology 37:80–91
    [Google Scholar]
  6. Bryant M., Ratner L. 1990; Myristoylation-dependent replication and assembly of human immunodeficiency virus 1. Proceedings of the National Academy of Sciences, USA 87:523–527
    [Google Scholar]
  7. Chang D., Cai X., Consigli R. A. 1993; Characterization of the DNA binding properties of polyomavirus capsid proteins. Journal of Virology 67:6327–6331
    [Google Scholar]
  8. Clever J., Kasamatsu H. 1991; Simian virus 40 Vp2/3 small structural proteins harbor their own nuclear transport signal. Virology 181:78–90
    [Google Scholar]
  9. Clever J., Dean D. A., Kasamatsu H. 1993; Identification of a DNA binding domain in simian virus 40 capsid proteins Vp2 and Vp3. Journal of Biological Chemistry 268:20877–20883
    [Google Scholar]
  10. Cole C. N., Landers T., Goff S. P., Manteuil-Brutlag S., Berg P. 1977; Physical and genetic characterization of deletion mutants of simian virus 40 constructed in vitro . Journal of Virology 24:277–294
    [Google Scholar]
  11. Dilworth S. M., Griffin B. E. 1982; Monoclonal antibodies against polyoma virus tumor antigens. Proceedings of the National Academy of Sciences, USA 79:1059–1063
    [Google Scholar]
  12. Forstová J., Krauzewicz N., Wallace S., Street A. J., Dilworth S. M., Beard S., Griffin B. E. 1993; Cooperation of structural proteins during late events in the life cycle of polyomavirus. Journal of Virology 67:1405–1413
    [Google Scholar]
  13. Forstová J., Krauzewicz N., Sandig V., Elliott J., Palková Z., Strauss M., Griffin B. E. 1995; Polyoma virus pseudocapsids as efficient carriers of heterologous DNA into mammalian cells. Human Gene Therapy 6:297–306
    [Google Scholar]
  14. Griffin B. E., Soeda E., Barrell B. G., Staden R. 1981; Sequence and analysis of polyoma virus DNA. In DNA Tumor Viruses pp 843–910 Edited by Tooze J. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  15. Griffith G. R., Consigli R. A. 1984; Isolation and characterization of monopinocytotic vesicles containing polyomavirus from the cytoplasm of infected mouse kidney cells. Journal of Virology 50:77–85
    [Google Scholar]
  16. Gripon P., Le Seyec J., Rumin S., Guguen-Guillouzo C. 1995; Myristylation of the hepatitis B virus large surface protein is essential for viral infectivity. Virology 213:292–299
    [Google Scholar]
  17. Hogan B., Beddington R., Costantini F., Lacy E. E. 1994 Manipulating the Mouse Embryo: Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  18. Johnson D. R., Bhatnagar R. S., Knoll L. J., Gordon J. I. 1994; Genetic and biochemical studies of protein N-myristoylation. Annual Review of Biochemistry 63:869–914
    [Google Scholar]
  19. Krauzewicz N., Streuli C. H., Stuart-Smith N., Jones M. D., Wallace S., Griffin B. E. 1990; Myristylated polyomavirus VP2: role in the life cycle of the virus. Journal of Virology 64:4414–4420
    [Google Scholar]
  20. Krauzewicz N., Štokrová J., Jenkins C., Elliott M., Higgins C. F., Griffin B. E. 2000; Virus-like gene transfer into cells mediated by polyoma virus pseudocapsids. Gene Therapy 7:2122–2131
    [Google Scholar]
  21. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685
    [Google Scholar]
  22. Leavitt A. D., Roberts T. M., Garcea R. L. 1985; Polyoma virus major capsid protein, VP1: purification after high level expression in Escherichia coli . Journal of Biological Chemistry 260:12803–12809
    [Google Scholar]
  23. Li M., Delos S. E., Montross L., Garcea R. L. 1995; Polyomavirus VP1 phosphorylation: coexpression with the VP2 capsid protein modulates VP1 phosphorylation in Sf9 insect cells. Proceedings of the National Academy of Sciences, USA 92:5992–5996
    [Google Scholar]
  24. Lin W., Hata T., Kasamatsu H. 1984; Subcellular distribution of viral structural proteins during simian virus 40 infection. Journal of Virology 50:363–371
    [Google Scholar]
  25. Maniatis T., Fritsch E. F., Sambrook J. 1982 Molecular Cloning: a Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  26. Marc D., Masson G., Girard M., van der Werf S. 1990; Lack of myristoylation of poliovirus capsid polypeptide VP0 prevents the formation of virions or results in the assembly of noninfectious virus particles. Journal of Virology 64:4099–4107
    [Google Scholar]
  27. Martín-Belmonte F., López-Guerrero J. A., Carrasco L., Alonso M. A. 2000; The amino-terminal nine amino acid sequence of poliovirus capsid VP4 protein is sufficient to confer N-myristoylation and targeting to detergent-insoluble membranes. Biochemistry 39:1083–1090
    [Google Scholar]
  28. Montross L., Watkins S., Moreland R. B., Mamon H., Caspar D. L. D., Garcea R. L. 1991; Nuclear assembly of polyomavirus capsids in insect cells expressing the major capsid protein VP1. Journal of Virology 65:4991–4998
    [Google Scholar]
  29. Moscufo N., Chow M. 1992; Myristat–protein interactions in poliovirus: interactions of VP4 threonine 28 contribute to the structural conformation of assembly intermediates and the stability of assembled virions. Journal of Virology 66:6849–6857
    [Google Scholar]
  30. Moscufo N., Gomez Yafal A., Rogowe A., Hogle J., Chow M. 1993; A mutation in VP4 defines a new step in the late stages of cell entry by poliovirus. Journal of Virology 67:5075–5078
    [Google Scholar]
  31. Pelkmans L., Kartenbeck J., Helenius A. 2001; Caveolar endocytosis of simian virus 40 reveals a new two-step vesicular-transport pathway to the ER. Nature Cell Biology 5:473–483
    [Google Scholar]
  32. Rein A., McClure M. R., Rice N. R., Luftig R. B., Schultz A. M. 1986; Myristylation site in Pr65gag is essential for virus particle formation by Moloney murine leukemia virus. Proceedings of the National Academy of Sciences, USA 83:7246–7250
    [Google Scholar]
  33. Richterová Z., Liebl D., Horák M., Palková Z., Štokrová J., Hozák P., Korb J., Forstová J. 2001; Caveolae are involved in the trafficking of mouse polyoma virions and artificial VP1 pseudocapsids towards cell nuclei. Journal of Virology 75:10880–10891
    [Google Scholar]
  34. Sahli R., Freund R., Dubensky T., Garcea R., Bronson R., Benjamin T. 1993; Defect in entry and altered pathogenicity of a polyoma virus mutant blocked in VP2 myristylation. Virology 192:142–153
    [Google Scholar]
  35. Stamatos N. M., Chakrabarti S., Moss B., Hare J. D. 1987; Expression of polyomavirus virion proteins by a vaccinia virus vector: association of VP1 and VP2 with the nuclear framework. Journal of Virology 61:516–525
    [Google Scholar]
  36. Staufenbiel M., Deppert W. 1984; Preparation of nuclear matrices from cultured cells: subfractionation of nuclei in situ . Journal of Cell Biology 98:1886–1894
    [Google Scholar]
  37. Stehle T., Yan Y., Benjamin T. L., Harrison S. C. 1994; Structure of murine polyomavirus complexed with an oligosaccharide receptor fragment. Nature 369:160–163
    [Google Scholar]
  38. Streuli C. H., Griffin B. E. 1987; Myristic acid is coupled to a structural protein of polyoma virus and SV40. Nature 326:619–621
    [Google Scholar]
  39. Türler H., Beard P. 1985; Simian virus 40 and polyoma virus: growth, titration, transformation and purification of viral components. In Virology. A Practical Approach pp 169–192 Edited by Mahy B. W. J. Oxford: IRL Press;
    [Google Scholar]
  40. Yanisch-Perron C., Vieira J., Messing J. 1985; Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33:103–119
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-83-9-2309
Loading
/content/journal/jgv/10.1099/0022-1317-83-9-2309
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error