1887

Abstract

We have investigated the ability of monkey kidney cell lines (SupD3 and SupD12) inducibly expressing an amber suppressor tRNA to suppress amber nonsense mutations in three genes of herpes simplex virus type 1 (HSV-1). HSV-1 mutant TK4, which contains a nonsense mutation in the non-essential viral thymidine kinase (TK) gene, synthesized a full-length TK polypeptide at about 30% of the wild-type (wt) level in induced SupD3 cells but not in the parental non-suppressor (Sup0) cells. Using complementing cells, we constructed HSV-1 mutants carrying nonsense mutations in an essential gene, UL8, encoding a protein essential for viral DNA replication (UL8) or in a partially dispensable gene, UL12, encoding alkaline nuclease (UL12). The growth of the mutants in Vero or Sup0 cells was either totally (UL8) or severely (UL12) impaired, whereas in cells expressing suppressor tRNA the mutants produced infectious virus. However, the yields were much lower than obtained with wt HSV-1. In Vero or Sup0 cells the mutants UL8 and UL12 failed to synthesize full-length UL8 and UL12 protein products, respectively. Western immuno-blotting showed that the virus UL12 produced full-length UL12 protein in SupD12 cells which yielded a level of 25.9% of the alkaline nuclease activity of the wt HSV-1 control. Our results show that the levels of suppression of the nonsense mutations in UL8 and UL12 are insufficient to allow their continuing propagation in the available Sup cells. Possible reasons are discussed.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-77-2-199
1996-02-01
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/jgv/77/2/JV0770020199.html?itemId=/content/journal/jgv/10.1099/0022-1317-77-2-199&mimeType=html&fmt=ahah

References

  1. Banks L., Purifoy D. J. M., Hurst P.-F., Killington R. A., Powell K. L. 1983; Herpes simplex virus non-structural proteins. IV. Purification of the virus-induced deoxyribonuclease and characterization of the enzyme using monoclonal antibodies. Journal of General Virology 64:2249–2260
    [Google Scholar]
  2. Banks L., Halliburton I. W., Purifoy D. J. M., Killington R. A., Powell K. L. 1985; Studies on the herpes simplex virus alkaline nuclease: detection of type-common and type-specific epitopes on the enzyme. Journal of General Virology 66:1–14
    [Google Scholar]
  3. Bossi L. 1983; Context effects: translation of UAG codon by suppressor tRNA is affected by the sequence following UAG in the message. Journal of Molecular Biology 164:73–87
    [Google Scholar]
  4. Brown S. M., Ritchie D. A., Subak-Sharpe J. H. 1973; Genetic studies with herpes simplex virus type 1. The isolation of temperature-sensitive mutants, their arrangements into complementation groups and recombination analysis leading to a linkage map. Journal of General Virology 18:329–346
    [Google Scholar]
  5. Calder J. M., Stow N. D. 1990; Herpes simplex virus helicase-primase: the UL8 protein is not required for DNA-dependent ATPase and DNA helicase activities. Nucleic Acids Research 18:3573–3578
    [Google Scholar]
  6. Calder J. M., Stow E. C., Stow N. D. 1992; On the cellular localization of the herpes simplex virus type 1 helicase-primase complex and the viral origin-binding protein. Journal of General Virology 73:531–538
    [Google Scholar]
  7. Capone J. P., Sharpe P. A., RajBhandari U. L. 1985; Amber, ochre and opal suppressor tRNA genes derived from a human serine tRNA gene. EM BO Journal 4:213–221
    [Google Scholar]
  8. Carmichael E. P., Weller S. K. 1989; Herpes simplex virus type 1 DNA synthesis requires the product of the UL8 gene: isolation and characterization of an ICP6::lacZ insertion mutation. Journal of Virology 63:591–599
    [Google Scholar]
  9. Chejanovsky N., Carter B. J. 1989; Replication of a human parvovirus nonsense mutant in mammalian cells containing an inducible amber suppressor. Virology 171:239–247
    [Google Scholar]
  10. Coen D. M., Irmiere A. F., Jacobson J. G., Kerns K. M. 1989; Low levels of herpes simplex virus thymidine-thymidylate kinase are not limiting for sensitivity to certain antiviral drugs or for latency in a mouse model. Virology 168:221–231
    [Google Scholar]
  11. Costa R. H., Draper K. G., Banks L., Powell K. L., Cohen G., Eisenberg R., Wagner E. K. 1983; High-resolution characterization of herpes simplex virus type 1 transcripts encoding alkaline exonuclease and a 50000-dalton protein tentatively identified as a capsid protein. Journal of Virology 48:591–603
    [Google Scholar]
  12. Cremer K. J., Bodemer M., Summers W. P., Summers W. C., Gesteland R. F. 1979; In vitro suppresion of UAG and UGA mutations in thymidine kinase gene of herpes simplex virus. Proceedings of the National Academy of Sciences, USA 76:430–434
    [Google Scholar]
  13. Crute J. J., Tsurumi T., Zhu L., Weller S. K., Olivo P. D., Challberg M. D., Mocarski E. S., Lehman I. R. 1989; Herpes simplex virus type 1 helicase–primase: a complex of the herpes-encoded gene products. Proceedings of the National Academy of Sciences, USA 86:2186–2189
    [Google Scholar]
  14. DeLuca N. A., McCarthy A. M., Schaffer P. A. 1985; Isolation and characterization of deletion mutants of herpes simplex virus type 1 in the gene encoding immediate-early regulatory protein ICP4. Journal of Virology 56:558–570
    [Google Scholar]
  15. Dodson M. S., Crute J. J., Bruckner R. C., Lehman I. R. 1989; Overexpression and assembly of the herpes simplex virus type 1 helicase–primase in insect cells. Journal of Biological Chemistry 264:20835–20838
    [Google Scholar]
  16. Draper K. G., Devi-Rao G., Costa R. H., Blair E. D., Thompson R. L., Wagner E. K. 1986; Characterization of the genes encoding herpes simplex virus type 1 and type 2 alkaline exonuclease and overlapping proteins. Journal of Virology 57:1023–1036
    [Google Scholar]
  17. Haarr L., Marsden H. S., Preston C. M., Smiley J. R., Summers W. C., Summers W. P. 1985; Utilization of internal AUG codons for initiation of protein synthesis directed by mRNAs from normal and mutant genes encoding herpes simplex virus-specified thymidine kinase. Journal of Virology 56:512–519
    [Google Scholar]
  18. Hudziak R. M., Laski F. A., RajBhandari U. L., Sharpe P. A., Capecchi M. R. 1982; Establishment of mammalian cell lines containing multiple nonsense mutations and functional suppressor transfer RNA genes. Cell 31:137–146
    [Google Scholar]
  19. Irmiere A. F., Manos M. M., Jacobson J. G., Gibbs J. S., Coen D. M. 1989; Effect of an amber mutation in the herpes simplex virus thymidine kinase gene on polypeptide synthesis and stability. Virology 168:210–220
    [Google Scholar]
  20. Laski F. A., Belagaje R., RajBhandari U. L., Sharpe P. A. 1982; An amber suppressor tRNA gene derived by site specific mutagenesis: cloning and expression in mammalian cells. Proceedings of the National Academy of Sciences, USA 79:5813–5817
    [Google Scholar]
  21. Laski F. A., Belagaje R., Hudziak R. M., Capecchi M. R., Palesb P., RajBhandari U. L., Sharpe P. A. 1984; Synthesis of an ochre suppressor transfer RNA gene and expression in mammalian cells. EMBO Journal 3:2445–2452
    [Google Scholar]
  22. McGeoch D. J., Dolan A., Donald S., Rixon F. J. 1985; Sequence determination and genetic content of the short unique region of the genome of herpes simplex virus type 1. Journal of Molecular Biology 181:1–13
    [Google Scholar]
  23. McGeoch D. J., Dalrymple M. A., Davison A. J., Dolan A., Frame M. C., McNab D., Perry L. J., Scott J. E., Taylor M. P. 1988; The complete DNA sequence of the long unique region in the genome of herpes simplex virus type 1. Journal of General Virology 69:1531–1574
    [Google Scholar]
  24. McLean G. W., Abbotts A. P., Parry M. E., Marsden H. S., Stow N. D. 1994; The herpes simplex virus type 1 origin-binding protein interacts specifically with the viral UL8 protein. Journal of General Virology 75:2699–2706
    [Google Scholar]
  25. Malik A. K., Martinez R., Muncy L., Carmichael E. P., Weller S. K. 1992; Genetic analysis of the herpes simplex virus type 1 UL9 gene: isolation of a lacZ insertion mutant and expression in eukaryotic cells. Virology 190:702–715
    [Google Scholar]
  26. Marsden H. S., Crombie I. K., Subak-Sharpe J. H. 1976; Control of protein synthesis in herpesvirus-infected cells: analysis of the polypeptides induced by wild-type and sixteen temperaturesensitive mutants of HSV strain 17. Journal of General Virology 31:347–372
    [Google Scholar]
  27. Marsden H. S., Haarr L., Preston C. M. 1983; Processing of herpes simplex virus proteins and evidence that translation of thymidine kinase mRNA is initiated at three separate AUG codons. Journal of Virology 46:434–445
    [Google Scholar]
  28. Martin R., Mogg A. E., Heywood L. A., Nitschke L., Burke J. F. 1989; Aminoglycoside suppression at UAG, UAA and UGA codons in Escherichia coli and human tissue culture cells. Molecular and General Genetics 217:411–418
    [Google Scholar]
  29. Miller J. H., Albertini A. M. 1983; Effects of surrounding sequences on the suppression of nonsense codons. Journal of Molecular Biology 164:59–71
    [Google Scholar]
  30. Morrison J. M., Keir H. M. 1968; A new DNA-exonuclease in cells infected with herpes virus: partial purification and properties of the enzyme. Journal of General Virology 3:337–347
    [Google Scholar]
  31. Phillips-Jones M. K., Watson F. J., Smith R. 1993; The 3′ codon context effect on UAG suppressor tRNA is different in Escherichia coli and human cells. Journal of Molecular Biology 233:1–6
    [Google Scholar]
  32. Preston C. M., Cordingley M. G. 1982; mRNA- and DNA-directed synthesis of herpes simplex virus encoded exonuclease in Xenopus laevis oocytes. Journal of Virology 43:386–394
    [Google Scholar]
  33. Reardon J. E., Spector T. 1989; Herpes simplex virus type 1 DNA polymerase: mechanism of inhibition by acyclovir triphosphate. Journal of Biological Chemistry 264:7405–7411
    [Google Scholar]
  34. Rosenthal K. S., Leuther M. D., Barisas B. G. 1984; Herpes simplex virus binding and entry modulate cell surface protein mobility. Journal of Virology 49:980–983
    [Google Scholar]
  35. Sayers J. R., Eckstein F. 1989; Site-directed mutagenesis, based on the phosphorothioate approach. In Protein Function: A Practical Approach pp 279–295 Edited by Creighton T. E. Oxford: IRL Press;
    [Google Scholar]
  36. Sedivy J. M., Capone J. P., RajBhandari U. L., Sharpe P. A. 1987; An inducible mammalian amber suppressor: propagation of a poliovirus mutant. Cell 50:379–389
    [Google Scholar]
  37. Shao L., Rapp L. M., Weller S. K. 1993; Herpes simplex virus 1 alkaline nuclease is required for efficient egress of capsids from the nucleus. Virology 196:146–162
    [Google Scholar]
  38. Sherman G., Gottlieb J., Challberg M. D. 1992; The UL8 subunit of herpes simplex virus helicase-primase complex is required for efficient primer utilization. Journal of Virology 66:4884–4892
    [Google Scholar]
  39. Smuda J. W., Carter B. J. 1991; Adeno-associated viruses having nonsense mutations in the capsid genes: growth in mammalian cells containing an inducible amber suppressor. Virology 184:310–318
    [Google Scholar]
  40. Southern P. J., Berg P. 1982; Transformation of mammalian cells to antibiotic resistance with a bacterial gene under control of the SV40 early region promoter. Journal of Molecular and Applied Genetics 1:327–341
    [Google Scholar]
  41. Summers W. P., Wagner M., Summers W. C. 1975; Possible peptide chain termination mutants in the thymidine kinase gene of a mammalian virus, herpes simplex virus. Proceedings of the National Academy of Sciences, USA 72:4081–4084
    [Google Scholar]
  42. Towbin H., Staehelin T., Gordon J. 1979; Electerophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proceedings of the National Academy of Sciences, USA 76:4350–4354
    [Google Scholar]
  43. Weir H. M., Calder J. M., Stow N. D. 1989; Binding of the herpes simplex virus type 1 UL9 gene product to an origin of viral DNA replication. Nucleic Acids Research 17:1409–1425
    [Google Scholar]
  44. Weller S. K., Seghatoleslami R. M., Shao L., Rowse D., Carmichael E. P. 1990; The herpes simplex virus type 1 alkaline nuclease is not essential for viral DNA synthesis: isolation and characterization of a lacZ insertion mutant. Journal of General Virology 71:2941–2952
    [Google Scholar]
  45. White B. T., McGeoch D. J. 1987; Isolation and characterization of conditional lethal amber nonsense mutants of vesicular stomatitis virus. Journal of General Virology 68:3033–3044
    [Google Scholar]
  46. Young J. F., Capecchi M. R., Laski F. A., RajBhandari U. L., Sharpe P. A., Palese P. 1983; Measurement of suppressor transfer RNA activity. Science 221:873–875
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-77-2-199
Loading
/content/journal/jgv/10.1099/0022-1317-77-2-199
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error