1887

Abstract

The complete sequence of the genome of bovine polyomavirus (BPyV), formerly known as the CK isolate of the stump-tailed macaque virus, is presented. The genomic organization of BPyV is similar to that of the non-rodent polyomaviruses. With a genome size of 4697 bp, BPyV has the smallest polyomavirus genome known so far. When compared to simian virus 40 (SV40), the shortness of the BPyV genome is due mainly to differences in the coding capacity of the BPyV early region. The first exon of the proposed large T antigen encodes only 35 amino acids; also, a coding region corresponding to the C-terminal 64 amino acids of the SV40 large T antigen is absent in BPyV. It is proposed that the nucleotide sequence encompassing the small t antigen coding sequence contains an intron sequence of 71 nucleotides. Together the two exon sequences encode a 124 amino acid protein. We conclude that this may be the first example of a polyomavirus that has a small t antigen which is translated from two exon sequences. The enhancer region of BPyV does not show homology to the SV40 enhancer sequences. An agnogene is present with a coding capacity of 118 amino acid residues. The highest degree of homology to SV40 and PyV is present in the VP1 molecule.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-71-8-1723
1990-08-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/jgv/71/8/JV0710081723.html?itemId=/content/journal/jgv/10.1099/0022-1317-71-8-1723&mimeType=html&fmt=ahah

References

  1. Bikel I., Mamon H., Brown E. L., Boltax J., Agha M. E., Livingston D. M. 1986; The t-unique coding domain is important to the transformation maintenance function of the simian virus 40 small t-antigen. Molecular and Cellular Biology 6:1172–1178
    [Google Scholar]
  2. Bikel I., Montano X., Agha M. E., Brown M., McCormack M., Livingston D. M. 1987; SV40 small t-antigen enhances the transformation activity of limiting concentrations of SV40 large T-antigen. Cell 48:321–330
    [Google Scholar]
  3. Buchman A. R., Burnett L., Berg P. 1981; Appendix A. In DNA Tumor Viruses, Molecular Biology of Tumor Viruses, 2nd edn.. pp 799–841 Tooze J. Edited by New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  4. Choi Y., Zee I., Ross S. R. 1988; Requirement for the simian virus 40 small tumor antigen in tumorigenesis in transgenic mice. Molecular and Cellular Biology 8:3382–3390
    [Google Scholar]
  5. Clark R., Peden K., Pipas J., Nathans D., Than R. 1983; Biochemical activities of T-antigen proteins encoded by SV40 A gene deletion mutants. Molecular and Cellular Biology 3:220–228
    [Google Scholar]
  6. Coacklev W., Maher D., Smith V. W. 1980; A possible bovine polyomavirus. Archives of Virology 66:161–166
    [Google Scholar]
  7. Cole C. N., Crawford L. V., Berg P. 1979; Simian virus 40 mutants with deletions at the 3′ end of the early region are defective in adenovirus helper function. Journal of Virology 30:683–691
    [Google Scholar]
  8. Deb S., DeLucia A. L., Koff A., Tsui S., Tegtmeijer P. 1986; The adenine-thymidine domain of the simian virus 40 core origin directs DNA bending and coordinately regulates DNA replication. Molecular and Cellular Biology 6:4578–4584
    [Google Scholar]
  9. DeCaprio J. A., Ludlow J. W., Figge J., Shew J. Y., Huang C. M., Lee W. H., Marsilio E., Paucha E., Livingston D. M. 1988; SV40 large tumor antigen forms a specific complex with the product of the retinoblastoma susceptibility gene. Cell 54:275–283
    [Google Scholar]
  10. Delmas V., Bastien C., Scherneck S., Feunteun J. 1985; A new member of the polyomavirus family: the hamster papova virus. Complete nucleotide sequence and transformation properties. EMBO Journal 4:1279–1286
    [Google Scholar]
  11. DeLucia A. L., Deb S., Partin K., Tegtmeijer P. 1983; Topography of simian virus 40 protein-DNA complexes: arrangement of protein interaction sites at the origin of replication. Journal of Virology 46:143–150
    [Google Scholar]
  12. Dyson N., Buchkovich K., Whyte P., Harlow E. 1989; The cellular 107K protein that binds to adenovirus El A also associates with the large-T-antigens of SV40 and JC virus. Cell 58:249–255
    [Google Scholar]
  13. Everett R. D., Baty D., Chambon P. 1983; The repeated GC- rich motifs upstream from the TATA-box are important elements of the SV40 early promoter. Nucleic Acids Research 11:2447–2464
    [Google Scholar]
  14. Ewen M. E., Ludlow J. W., Marsilio E., DeCaprio J. A., Millikan R. C., Cheng S. H., Paucha E., Livingston D. M. 1989; An N-terminal transformation governing sequence of SV40 large-T antigen contributes to the binding of both p110Rband a second cellular protein, p120. Cell 58:257–267
    [Google Scholar]
  15. Fiers W., Contreras R., Haegerman G., Rogiers R., Van Der Voorde A., Van Heuverswijn H., Van Herreweghe J., Volckaert G., Ijsebaart M. 1978; Complete nucleotide sequence of SV40 DNA. Nature; London: 273113–120
    [Google Scholar]
  16. Figge J., Webster T., Smith T. F., Paucha E. 1988; Prediction of similar transforming regions in simian virus 40 large-T, adenovirus E1A and myc oncoproteins. Journal of Virology 62:1814–1818
    [Google Scholar]
  17. Frisque R. J., Bream G. L., Canella M. T. 1984; Human polyomavirus JC virus genome. Journal of Virology 51:458–469
    [Google Scholar]
  18. Fromental C., Kanno M., Nomiyama H., Chambon P. 1988; Cooperativity and hierarchical levels of organization in the SV40 enhancer. Cell 54:943–953
    [Google Scholar]
  19. Good P. J., Welch R. C., Ryu W. S., Mertz J. E. 1988a; The late spliced 19S and 16S RNAs of simian virus 40 can be synthesized from a common pool of transcripts. Journal of Virology 62:563–571
    [Google Scholar]
  20. Good P. J., Welch R. C., Barkan A., Somasekhar M. B., Mertz J. E. 1988b; Both VP2 and VP3 are synthesized from each of the alternatively spliced late 19S RNA species of simian virus 40. Journal of Virology 62:944–953
    [Google Scholar]
  21. Graessmann A., Graessmann M., Than R., Topp W. C. 1980; Simian virus 40 small-t protein is required for loss of actin cable networks in rat cells. Journal of Virology 33:1182–1191
    [Google Scholar]
  22. Griffin B. E., Soeda E., Barrell B. G., Staden R. 1981; Appendix B. In DNA Tumor Viruses, Molecular Biology of Tumor Viruses, 2nd edn.. pp 843–910 Tooze J. Edited by New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  23. Hames B. D., Glover D. M.editor 1988 In Transcription and Splicing chapter 4 Oxford: IRL Press;
  24. Higgins D. G., Sharp P. M. 1988; Clustal: a program package for performing multiple sequence alignment on a microcomputer. Gene 73:237–244
    [Google Scholar]
  25. Hirt B. 1967; Selective extraction of polyoma DNA from infected mouse cell cultures. Journal of Molecular Biology 26:365–369
    [Google Scholar]
  26. Hunter T., Gibson W. 1978; Characterization of the mRNAs for the polyomavirus capsid proteins VP1, VP2 and VP3. Journal of Virology 28:240–253
    [Google Scholar]
  27. Jay G. S., Nomura S., Anderson C. W., Khoury G. 1981; Identification of the SV40 agnogene product: a DNA-binding protein. Nature; London: 291346–349
    [Google Scholar]
  28. Kalderon D., Richardson W., Markham A., Smith A. 1984a; Sequence requirements for nuclear localization of SV40 large-T. Nature; London: 31133–38
    [Google Scholar]
  29. Kalderon D., Roberts B., Richardson W., Smith A. 1984b; A short amino acid sequence able to specify nuclear location. Cell 39:499–509
    [Google Scholar]
  30. Khalili K., Brady J., Pipas J., Spence S. L., Sadofsky M., Khoury G. 1988; Carboxy-terminal mutants of the large-tumor antigen of simian virus 40: a role for the early protein late in the lytic cycle. Proceedings of the National Academy of Sciences U.S.A.: 85354–358
    [Google Scholar]
  31. Kozak M. 1986; Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes. Cell 44:283–292
    [Google Scholar]
  32. Livingston D. M., Bradley M. K. 1987; Review: The simian virus 40 large-T-antigen: a lot packed into a little. Molecular and Biological Medicine 4:63–80
    [Google Scholar]
  33. Loeber G., Parsons R., Tegtmeijer P. 1989; The zinc finger region of simian virus large-T antigen. Journal of Virology 63:94–100
    [Google Scholar]
  34. McCutchan J. H., Pagano J. S. 1968; Enhancement of the infectivity of simian virus 40 deoxyribonucleic acid with diethyl aminoethyl-dextran. Journal of the National Cancer Institute 41:351–357
    [Google Scholar]
  35. McVey D., Brizuela L., Mohr I., Marshak D. R., Gluzman Y., Beach D. 1989; Phosphorylation of large-tumour antigen by cdc-2 stimulates SV40 DNA replication. Nature; London: 341503–507
    [Google Scholar]
  36. Manos M., Gluzman Y. 1984; Simian virus 40 large-T-antigen point mutants that are defective in viral DNA replication but competent in oncogenic transformation. Molecular and Cellular Biology 4:1125–1133
    [Google Scholar]
  37. Melton D. W., Konecki D. S., Brennand J., Caskey C. 1984; Structure, expression and mutation of the hypoxanthine phospho- ribosyltransferase gene. Proceedings of the National Academy of Sciences U.S.A.: 812147–2151
    [Google Scholar]
  38. Miller R. H., Kaneko S., Chung C. T., Girones R., Purcell R. H. 1989; Compact organization of the hepatitis B virus genome. Hepatology 9:322–327
    [Google Scholar]
  39. Moran E. 1988; A region of SV40 large-T antigen can substitute for a transforming domain of the adenovirus El A products. Nature; London: 334168–170
    [Google Scholar]
  40. Mount S. M. 1982; A catalogue of splice junction sequences. Nucleic Acids Research 10:459–472
    [Google Scholar]
  41. Murphy C. I., Bikel I., Livingston D. M. 1986; Cellular proteins which can specifically associate with simian virus 40 small t-antigen. Journal of Virology 59:692–702
    [Google Scholar]
  42. Nevins J. R. 1983; The pathways of eukaryotic RNA formation. Annual Review of Biochemistry 52:441–466
    [Google Scholar]
  43. Ondek B., Gloss L., Herr W. 1988; The SV40 enhancer contains two distinct levels of organization. Nature; London: 33340–45
    [Google Scholar]
  44. Parry J. V., Gardner S. D. 1986 Human exposure to bovine polyomavirus: a zoonosis? Archives of Virology 87:287–296
    [Google Scholar]
  45. Parry J. V., Richmond J. E., Gardner S. D. 1983a; Polyomavirus in foetal rhesus monkey kidney cell lines used to grow hepatitis A virus. Lancet i:994
    [Google Scholar]
  46. Parry J. V., Lucas M. H., Richmond J. E., Gardner S. D. 1983b; Evidence for a bovine origin of the polyomavirus detected in foetal rhesus kidney cells FRhK-4 and 6. Archives of Virology 78:151–165
    [Google Scholar]
  47. Pawlita M., Clad A., Zur Hausen H. 1985; Complete DNA sequence of lymphotropic papovavirus: prototype of a new species of the polyomavirus genus. Virology 143:196–211
    [Google Scholar]
  48. Pipas J. M. 1985; Mutations near the carboxy terminus of the simian virus 40 large-tumor antigen alter viral host range. Journal of Virology 54:569–575
    [Google Scholar]
  49. Pipas J., Peden K., Nathans D. 1983; Mutational analysis of SV40-T-antigen: isolation and characterization of mutants with deletions in the T-antigen gene. Molecular and Cellular Biology 3:203–213
    [Google Scholar]
  50. Rangan S. R. S., Lowrie R. C., Roberts J. A., Johnston P. B., Warrick R. P. 1974; Virus from stumptailed monkey (Macaco arctoides)kidney cultures. laboratory Animat Science 24:211–217
    [Google Scholar]
  51. Reissig M., Kelly T. J., Daniel R. W., Rangan S. R. S., Shah K. V. 1976; Identification of the stumptailed macaque virus as a new papovavirus. Infection and Immunity 14:225–231
    [Google Scholar]
  52. Rott O., Kröger M., Müller H., Hobom G. 1988; The genome of the budgerigar fledgling disease virus, an avian polyomavirus. Virology 165:74–86
    [Google Scholar]
  53. Rubin H., Figge J., Baldon M. T., Chen L. B., Elmann M., Bikel I., Farrell M. P., Livingston D. M. 1982; Role of small t-antigen in the acute transforming activity of SV40. Cell 30:469–480
    [Google Scholar]
  54. Rundell K., Major E. O., Lampert M. 1981; Association of cellular 56,000 and 32,000 molecular-weight proteins with BK virus and polyomavirus t-antigens. Journal of Virology 37:1090–1093
    [Google Scholar]
  55. Saffer J. D., Singer M. F. 1984; Transcription from SV40-like monkey DNA sequences. Nucleic Acids Research 12:4769–4788
    [Google Scholar]
  56. Salzman N. P.editor 1986 Papovaviridae 1 The Polyoma- viruses New York & London: Plenum Press;
    [Google Scholar]
  57. Scheidtmann K. H., Echle B., Walter G. 1982; Simian virus large-T antigen is phosphorylated at multiple sites clustered in two separate regions. Journal of Virology 44:116–133
    [Google Scholar]
  58. Sedman S. A., Mertz J. E. 1988; Mechanisms of synthesis of virion proteins from the functionally bigenic late mRNAs of simian virus 40. Journal of Virology 62:954–961
    [Google Scholar]
  59. Sedman S. A., Good P. J., Mertz J. E. 1989; Leader encoded open reading frames modulate both the absolute and relative rates of synthesis of the virion proteins of simian virus 40. Journal of Virology 63:3884–3893
    [Google Scholar]
  60. Seif I., Khoury G., Dhar R. 1979; The genome of human papovavirus BKV. Cell 18:963–977
    [Google Scholar]
  61. Siddell S. G., Smith A. E. 1978; Polyomavirus has three late mRNAs, one for each virion protein. Journal of Virology 27:427–431
    [Google Scholar]
  62. Tooze J.editor 1981 DNA Tumor Viruses, Molecular Biology of Tumor Viruses, 2nd edn.. New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  63. Tornow J., Polvino-Bodnar M., Santagelo G., Cole C. N. 1985; Two separable functional domains of simian virus 40 large-T antigen: carboxy terminal region of simian virus 40 large-T antigen is required for efficient capsid protein synthesis. Journal of Virology 53:415–124
    [Google Scholar]
  64. Waldeck W., Sauer G. 1977; New oncogenic papovavirus from primate cells. Nature; London: 269171–173
    [Google Scholar]
  65. Westcott D. G. F., Ticehurst J., Chaplin M., Lukey J. R., Lucas M. 1987; The isolation of a virus resembling a polyomavirus from normal calves. Veterinary Microbiology 15:175–180
    [Google Scholar]
  66. Whyte P., Buchkovski K. J., Horowitz J. M., Friend S. H., Raybuck M., Weinberg R. A., Harlow E. 1988; Association between an oncogene and an anti-oncogene: the adenovirus El A proteins bind to the retinoblastoma gene product. Nature; London: 334124–129
    [Google Scholar]
  67. Wognum A. W., Sol C. J. A., Van Der Noordaa J., Vansteenis G., Osterhaus A. D. M. E. 1984; Isolation and characterization of a papovavirus from cynomolgus macaque kidney cells. Virology 134:254–257
    [Google Scholar]
  68. Xiao J. H., Davidson I., Ferrandon D., Rosales R., Vigneron M., Macchi M., Ruffenach F., Chambon P. 1987; One cell- specific and three ubiquitous nuclear proteins bind in vitroto overlapping motifs in the domain B1 of the SV40 enhancer. EMBO Journal 6:3005–3013
    [Google Scholar]
  69. Yang Y. C., Hearing P., Rundell K. 1979; Cellular proteins associated with simian virus 40 early gene products in newly infected cells. Journal of Virology 32:147–154
    [Google Scholar]
  70. Zenke M., Grundstrom T., Matthes H., Wintzerith M., Schatz C., Wildeman A., Chambon P. 1986; Multiple sequence motifs are involved in SV40 enhancer function. EMBO Journal 5:387–397
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-71-8-1723
Loading
/content/journal/jgv/10.1099/0022-1317-71-8-1723
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error