1887

Abstract

DNA sequences covering 36% of the mle gene that encodes the malolactic enzyme were determined for 13 strains of lactic acid bacteria, representing and genera. The sequences were aligned with the corresponding region of mleS in . The phylogenetic distance matrix tree of all mle sequences was compared with the 16S rRNA phylogenetic tree. The analysis showed that the mle fragment evolved more rapidly than the 16S gene and differently. and species were intermixed in the 16S rRNA tree whereas they were in the mle tree. and were distinct from other species in the 16S rRNA tree, whereas they were intermixed with species and in the mle tree. The amino acid sequences deduced from partial mle genes were aligned with 22 malic enzyme sequences and the corresponding phylogenetic tree was . Malic and malolactic enzymes were distinct at the phylogenetic level, except for malic enzymes of yeast and which were nearer the malolactic enzymes than the other malic enzymes. The analysis of conserved sites showed several interesting amino acids specific to either malic enzyme or malolactic enzyme.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-49-4-1417
1999-10-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/49/4/ijs-49-4-1417.html?itemId=/content/journal/ijsem/10.1099/00207713-49-4-1417&mimeType=html&fmt=ahah

References

  1. Ansanay V., Dequin S., Blondin B., Barre P. 1993; Cloning, sequence and expression of the gene encoding the malolactic enzyme from Lactococcus lactis. FEBS Lett 332:74–80
    [Google Scholar]
  2. Bagchi S., Wise L. S., Brown M. L, Sul H. S., Bregman D. B., Rubin C. S. 1986; Regulation and structure of murine malic enzyme mRNA. Ann N Y Acad Sci 478:77–92
    [Google Scholar]
  3. Bairoch A. 1991; PROSITE: a dictionary of sites and patterns in proteins. Nucleic Acids Res 19:suppl.2241–2245
    [Google Scholar]
  4. Batterman G., Radler F. 1990; A comparative study of malolactic enzyme and malic enzyme of different lactic acid bacteria. Can J Microbiol 37:211–217
    [Google Scholar]
  5. Birnboim H. C., Doly J. 1979; A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res 7:1513–1523
    [Google Scholar]
  6. Birtles R. J., Raoult D. 1996; Comparison of partial citrate sythase gene (gltA) sequences for phylogenetic analysis of Bartonella species. Int J Syst Bacteriol 46:891–897
    [Google Scholar]
  7. Boles E., de Jong-Gubbels P., Pronk J. T. 1998; Identification and characterization of MAE1, the Saccharomyces cerevisiae structural gene encoding mitochondrial malic enzyme. J Bacteriol 180:2875–2882
    [Google Scholar]
  8. Borsch D., Westhoff P. 1990; Primary structure of NADP-dependent malic enzyme in the dicotyledonous C4 plant Flaveria trinervia. FEBS Lett 273:111–115
    [Google Scholar]
  9. Buchanan R. E., Gibbons N. E. 1986 Bergey’s Manual of Determinative Bacteriology, 9th. Baltimore: Williams & Wilkins;
    [Google Scholar]
  10. Bullock W. O., Fernandez J. M., Short J. M. 1987; XLl-Blue: a high efficiency plasmid transforming RecA Escherichia coli strain with β-galactosidase selection. BioTechniques 5:376–379
    [Google Scholar]
  11. Caspritz G., Radler F. 1983; Malolactic enzyme of Lactobacillus plantarum. Purification, properties, and distribution among bacteria. J Biol Chern 258:4907–4910
    [Google Scholar]
  12. Chang G. G., Satterlee J., Hsu R. Y. 1993; Essential sulfhydryl group of malic enzyme from Escherichia coli. J Protein Chern 12:7–10
    [Google Scholar]
  13. Chou W. Y., Huang S. M., Liu Y. H., Chang G. G. 1994; Cloning and expression of pigeon liver cytosolic NADP+- dependent malic enzyme cDNA and some of its abortive mutants. Arch Biochem Biophys 310:158–166
    [Google Scholar]
  14. Christensen H., Olsen J. E. 1998; Phylogenetic relationships of Salmonella based on DNA sequence comparison of atpD encoding the beta subunit of ATP synthase. FEMS Microbiol Lett 161:89–96
    [Google Scholar]
  15. Collins M. D., Farrow J. A. E., Phillips B. A., Ferusu S., Jones D. 1987; Classification of Lactobacillus divergens, Lactobacillus piscícola and some catalase-negative, asporogenous, rodshaped bacteria from poultry in a new genus, Carnobacterium. Int J Syst Bacteriol 31:310–316
    [Google Scholar]
  16. Collins M. D., Williams A. M., Wallbanks S. 1990; The phylogeny of Aerococcus and Pediococcus as determined by 16S rRNA sequence analysis: description of Tetragenococcus gen. nov. FEMS Microbiol Lett 58:255–262
    [Google Scholar]
  17. Collins M. D., Rodrigues U., Ash C., Aguirre M., Farrow J. A. E., Martinez-Murcia A., Phillips B. A., Williams A. M., Wallbanks S. 1991; Phylogenetic analysis of the genus Lactobacillus and related lactic acid bacteria as determined by reverse transcriptase sequencing of 16S rRNA. FEMS Microbiol Lett 77:5–12
    [Google Scholar]
  18. Collins M. D., Samelis J., Metaxopoulos J., Wallbanks S. 1993; Taxonomic studies on some leuconostoc-like organisms from fermented sausages: description of a new genus Weissella for the Leuconostoc paramesenteroides group of species. J Appl Bacteriol 75:595–603
    [Google Scholar]
  19. Cushman J. C. 1992; Characterization and expression of a NADP-malic enzyme cDNA induced by salt stress from the facultative crassulacean acid metabolism plant, Mesembryanthemum crystallinum. Eur J Biochem 208:259–266
    [Google Scholar]
  20. Denayrolles M., Aigle M., Lonvaud-Funel A. 1994; Cloning and sequence analysis of the gene encoding Lactococcus lactis malolactic enzyme: relationships with malic enzymes. FEMS Microbiol Lett 116:79–86
    [Google Scholar]
  21. De Roissart H., Luquet F. M.editors 1994 Bactéries Lactiques. Aspects Fondamentaux et Technologiques 1133–137 Uriage: Lorica;
    [Google Scholar]
  22. Dicks L. M. T., Dellaglio F., Collins M. D. 1995; Proposal to reclassify Leuconostoc oenos as Oenococcus oeni (corrig.) gen. nov., comb. nov. Int J Syst Bacteriol 45:395–397
    [Google Scholar]
  23. Dicks L. M. T., Du Plessis E. M., Dellaglio F., Lauer E. 1996; Reclassification of Lactobacillus casei subsp. casei ATCC 393 and Lactobacillus rhamnosus ATCC 15820 as Lactobacillus zeae nom. rev., designation of ATCC 334 as the neotype of L. casei subsp. casei, and rejection of the name Lactobacillus paracasei. Int J Syst Bacteriol 46:337–340
    [Google Scholar]
  24. Felsenstein J. 1989; phylip: phylogeny inference package. Cladistics 5:164–166
    [Google Scholar]
  25. Fox G. E., Wisotzkey J. D., Jurtshuk P. 1992; How close is close: 16S rRNA sequence identity may not be sufficient to guarantee species identity. Int J Syst Bacteriol 42:166–170
    [Google Scholar]
  26. Franke K. E., Adams D. O. 1995; Cloning of a full-length cDNA for malic enzyme (EC 1.1.1.40) from grape berries. Plant Physiol 107:1009–1010
    [Google Scholar]
  27. Fushimi T., Umeda M., Shimazaki T., Kato A., Toriyama K., Uchimiya H. 1994; Nucleotide sequence of a rice cDNA similar to a maize NADP-dependent malic enzyme. Plant Mol Biol 24:965–967
    [Google Scholar]
  28. Gasson M. J., Davies F. L. 1980; Conjugal transfer of drug resistance plasmid pAMβl in lactic streptococci. FEMS Microbiol Lett 7:51–53
    [Google Scholar]
  29. Gavva S. R., Harris B. G., Weiss P. M., Cook P. F. 1991; Modification of a thiol at the active site of the Ascaris suum NAD-malic enzyme results in changes in the rate-determining steps for oxidative decarboxylation of l-malate. Biochemistry 30:5764–5769
    [Google Scholar]
  30. Gonzalez-Manchon C., Ferrer M., Ayuso M. S., Parrilla R. 1995; Cloning, sequencing and functional expression of a cDNA encoding a NADP-dependent malic enzyme from human liver. Gene 159:255–260
    [Google Scholar]
  31. Harty D. W., Oakey H. J., Patrikakis M., Hume E. B., Knox K. W. 1994; Pathogenic potential of lactobacilli. Int J Food Microbiol 24:179–189
    [Google Scholar]
  32. Hrdy I., Muller M. 1995; Primary structure of the hydrogenosomal malic enzyme of Trichomonas vaginalis and its relationship to homologous enzymes. J Eukaryot Microbiol 42:593–603
    [Google Scholar]
  33. Hsu R. Y., Glynias M. J., Satterlee J.7 other authors 1992; Duck liver ‘malic’ enzyme. Expression in Escherichia coli and characterization of the wild-type enzyme and site-directed mutants. Biochem J 284:869–876
    [Google Scholar]
  34. Johnson J. L. 1984 Bacterial classification. III. Nucleic acids in bacterial classification. Bergey’s Manual of Systematic Bacteriology 18–11 Edited by Krieg N. R., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  35. Kawai S., Suzuki H., Yamamoto K., Inui M., Yukawa H., Kumagai H. 1996; Purification and characterization of a malic enzyme from the ruminal bacterium Streptococcus bovis ATCC 15352 and cloning and sequencing of its gene. Appl Environ Microbiol 62:2692–2700
    [Google Scholar]
  36. Kulkarni L. P., Cook P. F., Harris B. G. 1993; Cloning and nucleotide sequence of a full-length cDNA encoding Ascaris suum malic enzyme. Arch Biochem Biophys 300:231–237
    [Google Scholar]
  37. Labarre C., Guzzo J., Cavin J. F., Divies C. 1996; Cloning and characterization of the genes encoding the malolactic enzyme and the malate permease of Leuconostoc oenos. Appl Environ Microbiol 62:1274–1282
    [Google Scholar]
  38. Lane D. L., Pace B., Olsen G. J., Stahl D. A., Sogin M. L., Pace N. R. 1985; Rapid determination of 16S ribosomal RNA sequences for phylogenetic analysis. Proc Natl Acad Sci USA 82:6955–6959
    [Google Scholar]
  39. Loeber G., Infante A. A., Maurer-Fogy I., Krystek E., Dworkin M. B. 1991; Human NAD+-dependent mitochondrial malic enzyme: cDNA cloning, primary structure, and expression in Escherichia coli. J Biol Chern 266:3016–3021
    [Google Scholar]
  40. London J., Meyer E. Y. 1969; Malate utilization by a group D Streptococcus, physiological properties and purification of a inductible malic enzyme. J Bacteriol 98:705–711
    [Google Scholar]
  41. Long J. J., Wang J. L., Berry J. O. 1994; Cloning and analysis of the C4 photosynthetic NAD-dependent malic enzyme of Amaranth mitochondria. J Biol Chern 269:2827–2833
    [Google Scholar]
  42. Lonvaud M. 1975 Recherches sur l’enzyme des bactéries lactiques du vin assurant la transformation du malate en lactate Thèse de 3ème cycle Université de Bordeaux II;
    [Google Scholar]
  43. Lonvaud M., Ribereau-Gayon P. 1973; Utilisation d’une électrode CO2 pour la détermination de l’activité de ‘ l’enzyme malique’ des bactéries lactiques du vin. C R Acad Sci D 276:2329–2331
    [Google Scholar]
  44. Lonvaud-Funel A., Strasser de Saad A. M. 1982; Purification and properties of a malolactic enzyme from a strain of Leuconostoc mesenteroides isolated from grapes. Appl Environ Microbiol 43:357–361
    [Google Scholar]
  45. Lonvaud-Funel A., Fremaux C, Biteau N., Joyeux A. 1991; Speciation of lactic acid bacteria from wine by DNA hybridization with DNA probes. Food Microbiol 8:215–222
    [Google Scholar]
  46. Mahayan S. K., Chu C. C., Willis D. K., Templin A., Clark A. J. 1990; Physical analysis of spontaneous and mutagen-induced mutants of Escherichia coli K-12 expressing DNA exonuclease VIII activity. Genetics 125:261–273
    [Google Scholar]
  47. Martinez-Murcia A. J., Collins M. D. 1990; A phylogenetic analysis of the genus Leuconostoc based on reverse transcriptase sequencing of 16 S rRNA. FEMS Microbiol Lett 58:73–83
    [Google Scholar]
  48. Miller J. H. 1972 Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  49. Morse R., Collins M. D., O’Hanlon K., Wallbanks S., Richardson P. T. 1996; Analysis of the f’ subunit of DNA-dependent RNA polymerase does not support the hypothesis inferred from 16S rRNA analysis that Oenococcus oeni (formerly Leuconostoc oenos) is a tachytelic (fast-evolving) bacterium. Int J Syst Bacteriol 46:1004–1009
    [Google Scholar]
  50. Naouri P., Chagnaud P., Arnaud A., Galzy P. 1990; Purification and properties of a malolactic enzyme from Leuconostoc œnos ATCC 23278. J Basic Microbiol 30:577–585
    [Google Scholar]
  51. Oakey H. J., Harty D. W., Knox K. W. 1995; Enzyme production by lactobacilli and the potential link with infective endocartis. J Appl Bacteriol 78:142–148
    [Google Scholar]
  52. Rothermel B. A., Nelson T. 1989; Primary structure of the maize NADP-dependent malic enzyme. J Biol Chern 264:19587–19592
    [Google Scholar]
  53. Roux V., Rydkina E., Eremeeva M., Raoult D. 1997; Citrate synthase gene comparison, a new tool for phylogenetic analysis, and its application for the Rickettsiae. Int J Syst Bacteriol 47:252–261
    [Google Scholar]
  54. Salminen S., von Wright A.editors 1998 Lactic Acid Bacteria. Microbiology & Functional Aspects, 2nd.1–22 New York: Marcel Dekker;
    [Google Scholar]
  55. Sanchez L. B., Hashimoto T., Müller M. 1996; Sequence of a malic enzyme gene of Giardia lamblia. Mol Biochem Parasitai 82:145–151
    [Google Scholar]
  56. Saxelin M., Chuang N. H., Chassy B., Rautelin H., Makela P. H., Salminen S., Gorbach S. L. 1996; Lactobacilli and bacteremia in southern Finland, 1989-1992. Clin Infect Dis 22:564–566
    [Google Scholar]
  57. Smith P. K., Khron R. I., Hermanson J. T.7 other authors 1985; Measurement of protein using bicinchoninic acid. Anal Biochem 150:76–85
    [Google Scholar]
  58. Sohier D., Coulon J., Lonvaud-Funel A. 1999; Molecular identification of Lactobacillus hilgardii and genetic relationships with Lactobacillus brevis. Int J Syst Bacteriol 49:1075–1081
    [Google Scholar]
  59. Spettoli P., Nuti M. P., Zamora A. 1984; Properties of malolactic activity purified from Leuconostoc oenos ML34 by affinity chromatography. Appl Environ Microbiol 48:900–903
    [Google Scholar]
  60. Springer E., Sachs M. S., Woese C. R., Boone D. R. 1995; Partial gene sequences for the A subunit of methyl-coenzyme M reductase (mcrV) as a phylogenetic tool for the family Methanosarcinaceae. Int J Syst Bacteriol 45:554–559
    [Google Scholar]
  61. Stiles M. E., Holzapfel W. H. 1997; Lactic acid bacteria of foods and their current taxonomy. Int J Food Microbiol 36:1–29
    [Google Scholar]
  62. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680
    [Google Scholar]
  63. Vandamme P., Pot B., Gillis M., de Vos P., Kersters K., Swings J. 1996; Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiol Rev 60:407–438
    [Google Scholar]
  64. Van der Glezen M., Rechinger K. B., Svendsen I., Durand R., Hirt R. P., Fevre M., Embley T. M., Prins R. A. 1997; A mitochondrial-like targeting signal on the hydrogenosomal malic enzyme from the anaerobic fungus Neocallimastix frontalis·, support for the hypothesis that hydrogenosomes are modified mitochondria. Mol Microbiol 23:11–21
    [Google Scholar]
  65. Van Doorsselaered J., Villaroel N., Montagu V., Inze D. 1991; Nucleotide sequence of a cDNA encoding enzyme from poplar. Plant Physiol 96:1385–1386
    [Google Scholar]
  66. Viljoen M., Subden R. E., Krizus A., van Vuuren H. J. J. 1994; Molecular analysis of the malic enzyme gene (mael) of Schizosaccharomyces pombe. Yeast 10:613–624
    [Google Scholar]
  67. Wallbanks S., Martinez-Murcia A. J., Fryer J. L, Phillips B. A., Collins M. D. 1990; 16S rRNA sequence determination for members of the genus Carnobacterium and related lactic acid bacteria and description of Vagococcus salmoninarum sp. nov. Int J Syst Bacteriol 40:224–230
    [Google Scholar]
  68. Walter M. H., Grima-Pettenati J., Grand C., Boudet A. M., Lamb C. J. 1990; Extensive sequence similarity of the bean CAD4 (cinnamoyl-alcohol dehydrogenase) to a maize malic enzyme. Plant Mol Biol 15:525–526
    [Google Scholar]
  69. Wei C. H., Chou W. Y., Huang S. M., Lin C. C., Chang G. G. 1994; Affinity cleavage at the putative metal-binding site of pigeon liver malic enzyme by the Fe2+-ascorbate system. Biochemistry 33:7931–7936
    [Google Scholar]
  70. Wei C. H., Chou W. Y., Chang G. G. 1995; Identification of Asp258 as the metal coordinate of pigeon liver malic enzyme by site-specific mutagenesis. Biochemistry 34:7949–7954
    [Google Scholar]
  71. Wierenga R. K., De Maeyer M. C. H., Hol W. G. J. 1985; Interaction of pyrophosphate moieties with a-helixes in dinucleotide binding proteins. Biochemistry 24:1346–1357
    [Google Scholar]
  72. Winning B. M., Bourguignon J., Leaver C. J. 1994; Plant mitochondrial NAD+-dependent malic enzyme. cDNA cloning, deduced primary structure of the 59- and 62-kDa subunits, import, gene complexity and expression analysis. J Biol Chern 269:4780–4786
    [Google Scholar]
  73. Woese C. R. 1987; Bacterial evolution. Microbiol Rev 51:221–271
    [Google Scholar]
  74. Yang D., Woese C. R. 1989; Phylogenetic structure of the ‘ Leuconostocs ‘: an interesting case of a rapidly evolving organism. Syst Appi Microbiol 12:145–149
    [Google Scholar]
  75. Zapparoli G., Torriani S., Pesente P., Dettaglio F. 1998; Design and evaluation of malolactic enzyme gene targeted primers for rapid identification and detection of Oenococcus oeni in wine. Lett Appi Microbiol 27:243–246
    [Google Scholar]
  76. Zavaleta A. L., Martinez-Murcia A. J., Rodriguez-Valera F. 1997; Intraspecific genetic diversity of Oenococcus oeni as derived from DNA fingerprinting and sequence analysis. Appi Environ Microbiol 63:1261–1267
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-49-4-1417
Loading
/content/journal/ijsem/10.1099/00207713-49-4-1417
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error