1887

Abstract

Despite numerous studies on human immunodeficiency virus type 1 (HIV-1) fitness, many key conceptual and technical questions are still unsolved. For example, the proper system to determine virus fitness of HIV-1 is still unknown. In this study, an assay was developed to estimate HIV-1 fitness based on growth competition experiments and TaqMan real-time PCR. This novel technique was compared with several methods (i.e. virus growth kinetics, growth competition/heteroduplex-tracking analysis and single-cycle replication capacity assay) in order to analyse the impact of various genomic regions and overall genetic background on virus fitness. HIV-1 primary isolates and three different sets of recombinant viruses [i.e. recombinant clones carrying protease (PR), reverse transcriptase (RT) or the 3′ end of Gag, PR and RT (3′Gag/PR/RT), sequences amplified by PCR from the same primary isolates)] were evaluated. Here, it is demonstrated that, in spite of intrinsic differences, both growth competition/TaqMan and single-cycle replication assays detected a significant reduction in HIV-1 fitness as a consequence of drug-resistant mutations in . However, this new assay, based on HIV-1 isolates, may be useful to quantify replicative fitness in viruses from patients treated simultaneously with antiretroviral drugs targeting different genomic regions of HIV-1 (e.g. and ).

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.19123-0
2003-08-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/84/8/vir842217.html?itemId=/content/journal/jgv/10.1099/vir.0.19123-0&mimeType=html&fmt=ahah

References

  1. Ball S. C., Abraha A., Collins K. R. 11 other authors 2003; Comparing the ex vivo fitness of CCR5-tropic human immunodeficiency virus type 1 isolates of subtypes B and C. J Virol 77:1021–1038
    [Google Scholar]
  2. Barbour J. D., Wrin T., Grant R. M., Martin J. N., Segal M. R., Petropoulos C. J., Deeks S. G. 2002; Evolution of phenotypic drug susceptibility and viral replication capacity during long-term virologic failure of protease inhibitor therapy in human immunodeficiency virus-infected adults. J Virol 76:11104–11112
    [Google Scholar]
  3. Berkhout B. 1999; HIV-1 evolution under pressure of protease inhibitors: climbing the stairs of viral fitness. J Biomed Sci 6:298–305
    [Google Scholar]
  4. Bleiber G., Munoz M., Ciuffi A., Meylan P., Telenti A. 2001; Individual contributions of mutant protease and reverse transcriptase to viral infectivity, replication, and protein maturation of antiretroviral drug-resistant human immunodeficiency virus type 1. J Virol 75:3291–3300
    [Google Scholar]
  5. Brenner B. G., Routy J. P., Petrella M. 9 other authors 2002; Persistence and fitness of multidrug-resistant human immunodeficiency virus type 1 acquired in primary infection. J Virol 76:1753–1761
    [Google Scholar]
  6. Cabana M., Clotet B., Martinez M. A. 1999; Emergence and genetic evolution of HIV-1 variants with mutations conferring resistance to multiple reverse transcriptase and protease inhibitors. J Med Virol 59:480–490
    [Google Scholar]
  7. Clavel F., Race E., Mammano F. 2000; HIV drug resistance and viral fitness. Adv Pharmacol 49:41–66
    [Google Scholar]
  8. Croteau G., Doyon L., Thibeault D., McKercher G., Pilote L., Lamarre D. 1997; Impaired fitness of human immunodeficiency virus type 1 variants with high-level resistance to protease inhibitors. J Virol 71:1089–1096
    [Google Scholar]
  9. de Baar M. P., Timmermans E. C., Bakker M., de Rooij E., van Gemen B., Goudsmit J. 2001; One-tube real-time isothermal amplification assay to identify and distinguish human immunodeficiency virus type 1 subtypes A, B, and C and circulating recombinant forms AE and AG. J Clin Microbiol 39:1895–1902
    [Google Scholar]
  10. Deeks S. G., Barbour J. D., Martin J. N., Swanson M. S., Grant R. M. 2000; Sustained CD4+ T cell response after virologic failure of protease inhibitor-based regimens in patients with human immunodeficiency virus infection. J Infect Dis 181:946–953
    [Google Scholar]
  11. Deeks S. G., Wrin T., Liegler T. 8 other authors 2001; Virologic and immunologic consequences of discontinuing combination antiretroviral-drug therapy in HIV-infected patients with detectable viremia. N Engl J Med 344:472–480
    [Google Scholar]
  12. de Ronde A., van Dooren M., van Der Hoek L., Bouwhuis D., de Rooij E., van Gemen B., de Boer R., Goudsmit J. 2001; Establishment of new transmissible and drug-sensitive human immunodeficiency virus type 1 wild types due to transmission of nucleoside analogue-resistant virus. J Virol 75:595–602
    [Google Scholar]
  13. Desire N., Dehee A., Schneider V., Jacomet C., Goujon C., Girard P. M., Rozenbaum W., Nicolas J. C. 2001; Quantification of human immunodeficiency virus type 1 proviral load by a TaqMan real-time PCR assay. J Clin Microbiol 39:1303–1310
    [Google Scholar]
  14. Garcia-Lerma J. G., Gerrish P. J., Wright A. C., Qari S. H., Heneine W. 2000; Evidence of a role for the Q151L mutation and the viral background in development of multiple dideoxynucleoside-resistant human immunodeficiency virus type 1. J Virol 74:9339–9346
    [Google Scholar]
  15. Grant R. M., Liegler T., Bonhoeffer S. 9 other authors 2001; Large fitness differences between protease inhibitor susceptible and resistant HIV-1 in vivo . 8th Annual Meeting on HIV Dynamics and Evolution , p. 28 (Paris, France: 27 29 April, 2001
    [Google Scholar]
  16. Gutierrez-Rivas M., Ibanez A., Martinez M. A., Domingo E., Menendez-Arias L. 1999; Mutational analysis of Phe160 within the ‘palm’ subdomain of human immunodeficiency virus type 1 reverse transcriptase. J Mol Biol 290:615–625
    [Google Scholar]
  17. Hall T. A. 1999; BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98
    [Google Scholar]
  18. Hance A. J., Lemiale V., Izopet J. 7 other authors 2001; Changes in human immunodeficiency virus type 1 populations after treatment interruption in patients failing antiretroviral therapy. J Virol 75:6410–6417
    [Google Scholar]
  19. Harrigan P. R., Bloor S., Larder B. A. 1998; Relative replicative fitness of zidovudine-resistant human immunodeficiency virus type 1 isolates in vitro . J Virol 72:3773–3778
    [Google Scholar]
  20. Hertogs K., de Bethune M. P., Miller V. 14 other authors 1998; A rapid method for simultaneous detection of phenotypic resistance to inhibitors of protease and reverse transcriptase in recombinant human immunodeficiency virus type 1 isolates from patients treated with antiretroviral drugs. Antimicrob Agents Chemother 42:269–276
    [Google Scholar]
  21. Holland J. J., de la Torre J. C., Clarke D. K., Duarte E. 1991; Quantitation of relative fitness and great adaptability of clonal populations of RNA viruses. J Virol 65:2960–2967
    [Google Scholar]
  22. Kellam P., Larder B. A. 1994; Recombinant virus assay: a rapid, phenotypic assay for assessment of drug susceptibility of human immunodeficiency virus type 1 isolates. Antimicrob Agents Chemother 38:23–30
    [Google Scholar]
  23. Kosalaraksa P., Kavlick M. F., Maroun V., Le R., Mitsuya H. 1999; Comparative fitness of multi-dideoxynucleoside-resistant human immunodeficiency virus type 1 (HIV-1) in an in vitro competitive HIV-1 replication assay. J Virol 73:5356–5363
    [Google Scholar]
  24. Laurendeau I., Bahuau M., Vodovar N., Larramendy C., Olivi M., Bieche I., Vidaud M., Vidaud D. 1999; TaqMan PCR-based gene dosage assay for predictive testing in individuals from a cancer family with INK4 locus haploinsufficiency. Clin Chem 45:982–986
    [Google Scholar]
  25. Lewin S. R., Vesanen M., Kostrikis L., Hurley A., Duran M., Zhang l., Ho D. D., Markowitz M. 1999; Use of real-time PCR and molecular beacons to detect virus replication in human immunodeficiency virus type 1-infected individuals on prolonged effective antiretroviral therapy. J Virol 73:6099–6103
    [Google Scholar]
  26. Lu J., Kuritzkes D. R. 2001; A novel recombinant marker virus assay for comparing the relative fitness of HIV-1 reverse transcriptase variants. J Acquir Immune Defic Syndr 27:7–13
    [Google Scholar]
  27. Maeda Y., Venzon D. J., Mitsuya H. 1998; Altered drug sensitivity, fitness, and evolution of human immunodeficiency virus type 1 with pol gene mutations conferring multi-dideoxynucleoside resistance. J Infect Dis 177:1207–1213
    [Google Scholar]
  28. Martinez-Picado J., Savara A. V., Sutton L., D'Aquila R. T. 1999; Replicative fitness of protease inhibitor-resistant mutants of human immunodeficiency virus type 1. J Virol 73:3744–3752
    [Google Scholar]
  29. Mas A., Parera M., Briones C., Soriano V., Martinez M. A., Domingo E., Menendez-Arias L. 2000; Role of a dipeptide insertion between codons 69 and 70 of HIV-1 reverse transcriptase in the mechanism of AZT resistance. EMBO J 19:5752–5761
    [Google Scholar]
  30. Maschera B., Furfine E., Blair E. D. 1995; Analysis of resistance to human immunodeficiency virus type 1 protease inhibitors by using matched bacterial expression and proviral infection vectors. J Virol 69:5431–5436
    [Google Scholar]
  31. Moore J. P., Stevenson M. 2000; New targets for inhibitors of HIV-1 replication. Nat Rev Mol Cell Biol 1:40–49
    [Google Scholar]
  32. Nijhuis M., Deeks S., Boucher C. 2001; Implications of antiretroviral resistance on viral fitness. Curr Opin Infect Dis 14:23–28
    [Google Scholar]
  33. Petropoulos C. J., Parkin N. T., Limoli K. L. 8 other authors 2000; A novel phenotypic drug susceptibility assay for human immunodeficiency virus type 1. Antimicrob Agents Chemother 44:920–928
    [Google Scholar]
  34. Prado J. G., Wrin T., Beauchaine J., Ruiz L., Petropoulos C. J., Frost S. D., Clotet B., D'Aquila R. T., Martinez-Picado J. 2002; Amprenavir-resistant HIV-1 exhibits lopinavir cross-resistance and reduced replication capacity. AIDS 16:1009–1017
    [Google Scholar]
  35. Quiñones-Mateu M. E., Arts E. J. 2001; HIV-1 fitness: implications for drug resistance, disease progression, and global epidemic evolution. In HIV Sequence Compendium 2001 pp  134–170 Edited by Kuiken C., Foley B., Hahn B., Marx P., McCutchan F., Mellors J., Wolinsky S., Korber B. Los Alamos, NM: Los Alamos National Laboratory, Theoretical Biology and Biophysics Group;
    [Google Scholar]
  36. Quiñones-Mateu M. E., Arts E. J. 2002; Fitness of drug resistant HIV-1: methodology and clinical implications. Drug Resist Updat 5:224–233
    [Google Scholar]
  37. Quiñones-Mateu M. E., Ball S. C., Marozsan A. J., Torre V. S., Albright J. L., Vanham G., van Der Groen G., Colebunders R. L., Arts E. J. 2000; A dual infection/competition assay shows a correlation between ex vivo human immunodeficiency virus type 1 fitness and disease progression. J Virol 74:9222–9233
    [Google Scholar]
  38. Quiñones-Mateu M. E., Tadele M., Parera M. 8 other authors 2002; Insertions in the reverse transcriptase increase both drug resistance and viral fitness in a human immunodeficiency virus type 1 isolate harboring the multi-nucleoside reverse transcriptase inhibitor resistance 69 insertion complex mutation. J Virol 76:10546–10552
    [Google Scholar]
  39. Reed L. J., Muench H. 1938; A simple method of estimating fifty percent endpoints. Am J Hyg 27:493–497
    [Google Scholar]
  40. Resch W., Ziermann R., Parkin N., Gamarnik A., Swanstrom R. 2002; Nelfinavir-resistant, amprenavir-hypersusceptible strains of human immunodeficiency virus type 1 carrying an N88S mutation in protease have reduced infectivity, reduced replication capacity, and reduced fitness and process the Gag polyprotein precursor aberrantly. J Virol 76:8659–8666
    [Google Scholar]
  41. Robinson L. H., Myers R. E., Snowden B. W., Tisdale M., Blair E. D. 2000; HIV type 1 protease cleavage site mutations and viral fitness: implications for drug susceptibility phenotyping assays. AIDS Res Hum Retroviruses 16:1149–1156
    [Google Scholar]
  42. Shi C., Mellors J. W. 1997; A recombinant retroviral system for rapid in vivo analysis of human immunodeficiency virus type 1 susceptibility to reverse transcriptase inhibitors. Antimicrob Agents Chemother 41:2781–2785
    [Google Scholar]
  43. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882
    [Google Scholar]
  44. Torre V. S., Marozsan A. J., Albright J. L., Collins K. R., Hartley O., Offord R. E., Quiñones-Mateu M. E., Arts E. J. 2000; Variable sensitivity of CCR5-tropic human immunodeficiency virus type 1 isolates to inhibition by RANTES analogs. J Virol 74:4868–4876
    [Google Scholar]
  45. Weber J., Rangel H. R., Chakraborty B. 12 other authors 2003; Role of baseline pol genotype in human immunodeficiency virus type 1 fitness evolution. J AIDS (in press)
    [Google Scholar]
  46. Yerly S., Chamot E., Hirschel B., Perrin L. H. 1992; Quantitation of human immunodeficiency virus provirus and circulating virus: relationship with immunologic parameters. J Infect Dis 166:269–276
    [Google Scholar]
  47. Zhao Y., Yu M., Miller J. W., Chen M., Bremer E. G., Kabat W., Yogev R. 2002; Quantification of human immunodeficiency virus type 1 proviral DNA by using TaqMan technology. J Clin Microbiol 40:675–678
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.19123-0
Loading
/content/journal/jgv/10.1099/vir.0.19123-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error