1887

Abstract

The (also called X1 or U274) gene is the largest unique open reading frame in the severe acute respiratory syndrome coronavirus genome and has been proposed to encode a protein with three transmembrane domains and a large cytoplasmic domain. Recent work has suggested that the 3a protein may play a structural role in the viral life cycle, although the mechanisms for this remain uncharacterized. Here, the expression of the 3a protein in various systems is shown, it has been localized to the Golgi region and its membrane topology in transfected cells has been confirmed. Three potential caveolin-1-binding sites were reported to be present in the 3a protein. By using various biochemical, biophysical and genetic techniques, interaction of the 3a protein with caveolin-1 is demonstrated. Any one of the potential sites in the 3a protein was sufficient for this interaction. These results are discussed with respect to the possible roles of the 3a protein in the viral life cycle.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.82856-0
2007-11-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/88/11/3067.html?itemId=/content/journal/jgv/10.1099/vir.0.82856-0&mimeType=html&fmt=ahah

References

  1. Akerstrom S., Mousavi-Jazi M., Klingstrom J., Leijon M., Lundkvist A., Mirazimi A. 2005; Nitric oxide inhibits the replication cycle of severe acute respiratory syndrome coronavirus. J Virol 79:1966–1969 [CrossRef]
    [Google Scholar]
  2. Anderson R. G. W. 1998; The caveolae membrane system. Annu Rev Biochem 67:199–225 [CrossRef]
    [Google Scholar]
  3. Anderson H. A., Chen Y., Norkin L. C. 1996; Bound simian virus 40 translocates to caveolin-enriched membrane domains, and its entry is inhibited by drugs that selectively disrupt caveolae. Mol Biol Cell 7:1825–1834 [CrossRef]
    [Google Scholar]
  4. Brown G., Aitken J., Rixon H. W. McL., Sugrue R. J. 2002; Caveolin-1 is incorporated into mature respiratory syncytial virus particles during virus assembly on the surface of virus-infected cells. J Gen Virol 83:611–621
    [Google Scholar]
  5. Cai Q. C., Jiang Q. W., Zhao G. M., Guo Q., Cao G. W., Chen T. 2003; Putative caveolin-binding sites in SARS-CoV proteins. Acta Pharmacol Sin 24:1051–1059
    [Google Scholar]
  6. Cherukuri A., Tzeng S. J., Gidwani A., Sohn H. W., Tolar P., Snyder M. D., Pierce S. K. 2004; Isolation of lipid rafts from B lymphocytes. Methods Mol Biol 271:213–224
    [Google Scholar]
  7. de Haan C. A., Smeets M., Vernooij F., Vennema H., Rottier P. J. 1999; Mapping of the coronavirus membrane protein domains involved in interaction with the spike protein. J Virol 73:7441–7452
    [Google Scholar]
  8. Engelman J. A., Chu C., Lin A., Jo H., Ikezu T., Okamoto T., Kohtz D. S., Lisanti M. P. 1998; Caveolin-mediated regulation of signaling along the p42/44 MAP kinase cascade in vivo. A role for the caveolin-scaffolding domain. FEBS Lett 428:205–211 [CrossRef]
    [Google Scholar]
  9. Engelman J. A., Zhang X. L., Razani B., Pestell R. G., Lisanti M. P. 1999; p42/44 MAP kinase-dependent and -independent signaling pathways regulate caveolin-1 gene expression. Activation of Ras-MAP kinase and protein kinase A signaling cascades transcriptionally down-regulates caveolin-1 promoter activity. J Biol Chem 274:32333–32341 [CrossRef]
    [Google Scholar]
  10. Felley-Bosco E., Bender F., Quest A. F. 2002; Caveolin-1-mediated post transcriptional regulation of inducible nitric oxide synthase in human colon carcinoma cells. Biol Res 35:169–176
    [Google Scholar]
  11. Fetzer C., Tews B. A., Meyers G. 2005; The carboxy-terminal sequence of the pestivirus glycoprotein Erns represents an unusual type of membrane anchor. J Virol 79:11901–11913 [CrossRef]
    [Google Scholar]
  12. Galbiati F., Volonte D., Liu J., Capozza F., Frank P. G., Zhu L., Pestell R. G., Lisanti M. P. 2001; Caveolin-1 expression negatively regulates cell cycle progression by inducing G(0)/G(1) arrest via a p53/p21(WAF1/Cip1)-dependent mechanism. Mol Biol Cell 12:2229–2244 [CrossRef]
    [Google Scholar]
  13. Garcia-Cardena G., Martasek P., Masters B. S., Skidd P. M., Couet J., Li S., Lisanti M. P., Sessa W. C. 1997; Dissecting the interaction between nitric oxide synthase (NOS) and caveolin. Functional significance of the NOS caveolin binding domain in vivo . J Biol Chem 272:25437–25440 [CrossRef]
    [Google Scholar]
  14. Holmes K. V. 2003; SARS coronavirus: a new challenge for prevention and therapy. J Clin Invest 111:1605–1609 [CrossRef]
    [Google Scholar]
  15. Huang C., Narayanan K., Ito N., Peters C. J., Makino S. 2006; Severe acute respiratory syndrome coronavirus 3a protein is released in membranous structures from 3a protein-expressing cells and infected cells. J Virol 80:210–217 [CrossRef]
    [Google Scholar]
  16. Hulit J., Bash T., Fu M., Galbiati F., Albanese C., Sage D. R., Schlegel A., Zhurinsky J., Shtutman M. other authors 2000; The cyclin D1 gene is transcriptionally repressed by caveolin-1. J Biol Chem 275:21203–21209 [CrossRef]
    [Google Scholar]
  17. Ito N., Mossel E. C., Narayanan K., Popov V. L., Huang C., Inoue T., Peters C. J., Makino S. 2005; Severe acute respiratory syndrome coronavirus 3a protein is a viral structural protein. J Virol 79:3182–3186 [CrossRef]
    [Google Scholar]
  18. Jameel S., Zafrullah M., Ozdener M. H., Panda S. K. 1996; Expression in animal cells and characterization of the hepatitis E virus structural proteins. J Virol 70:207–216
    [Google Scholar]
  19. Kar-Roy A., Korkaya H., Oberoi R., Lal S. K., Jameel S. 2004; The hepatitis E virus open reading frame 3 protein activates ERK through binding and inhibition of the MAPK phosphatase. J Biol Chem 279:28345–28357 [CrossRef]
    [Google Scholar]
  20. Ksiazek T. G., Erdman D., Goldsmith C. S., Zaki S. R., Peret T., Emery S., Tong S., Urbani C., Comer J. A. other authors 2003; A novel coronavirus associated with severe acute respiratory syndrome. N Engl J Med 348:1953–1966 [CrossRef]
    [Google Scholar]
  21. Lai M. M. C., Holmes K. V. 2001; Coronaviridae : the viruses and their replication. In Fields Virology , 4th edn. pp 1163–1185 Edited by Fields B., Knipe D. M., Howley P. M. Philadelphia, PA: Lippincott Williams & Wilkins;
    [Google Scholar]
  22. Law P. T., Wong C. H., Au T. C., Chuck C. P., Kong S. K., Chan P. K., To K. F., Lo A. W., Chan J. Y. other authors 2005; The 3a protein of severe acute respiratory syndrome-associated coronavirus induces apoptosis in Vero E6 cells. J Gen Virol 86:1921–1930 [CrossRef]
    [Google Scholar]
  23. Li S., Couet J., Lisanti M. P. 1996; Src tyrosine kinases, G-alpha subunits, and H-Ras share a common membrane-anchored scaffolding protein, caveolin. Caveolin binding negatively regulates the auto-activation of Src tyrosine kinases. J Biol Chem 271:29182–29190 [CrossRef]
    [Google Scholar]
  24. Lisanti M. P., Scherer P., Tang Z.-L., Sargiacomo M. 1994; Caveolae, caveolin and caveolin-rich membrane domains: a signaling hypothesis. Trends Cell Biol 4:231–235 [CrossRef]
    [Google Scholar]
  25. Lu W., Zheng B. J., Xu K., Schwartz W., Du L., Wong C. K., Chen J., Duan S., Deubel V., Sun B. 2006; Severe acute respiratory syndrome-associated coronavirus 3a protein forms an ion channel and modulates virus release. Proc Natl Acad Sci U S A 103:12540–12545 [CrossRef]
    [Google Scholar]
  26. Marra M. A., Jones S. J., Astell C. R., Holt R. A., Brooks-Wilson A., Butterfield Y. S., Khattra J., Asano J. K., Barber S. A. & other authors 2003; The genome sequence of the SARS-associated coronavirus. Science 300:1399–1404 [CrossRef]
    [Google Scholar]
  27. Murata M., Peranen J., Schreiner R., Wieland F., Kurzchalia T. V., Simons K. 1995; VIP21/caveolin is a cholesterol-binding protein. Proc Natl Acad Sci U S A 92:10339–10343 [CrossRef]
    [Google Scholar]
  28. Navas-Martin S., Weiss S. R. 2003; SARS: lessons learned from other coronaviruses. Viral Immunol 16:461–474 [CrossRef]
    [Google Scholar]
  29. Okamoto T., Schlegel A., Scherer P. E., Lisanti M. P. 1998; Caveolins, a family of scaffolding proteins for organizing “preassembled signaling complexes” at the plasma membrane. J Biol Chem 273:5419–5422 [CrossRef]
    [Google Scholar]
  30. Oostra M., de Haan C. A. M., de Groot R. J., Rottier P. J. M. 2006; Glycosylation of the severe acute respiratory syndrome coronavirus triple-spanning membrane proteins 3a and M. J Virol 80:2326–2336 [CrossRef]
    [Google Scholar]
  31. Ortego J., Sola I., Almazan F., Ceriani J. E., Riquelme C., Balasch M., Plana J., Enjuanes L. 2003; Transmissible gastroenteritis coronavirus gene 7 is not essential but influences in vivo virus replication and virulence. Virology 308:13–22 [CrossRef]
    [Google Scholar]
  32. Paul P. S., Vaughn E. M., Halbur P. G. 1997; Pathogenicity and sequence analysis studies suggest potential role of gene 3 in virulence of swine enteric and respiratory coronaviruses. Adv Exp Med Biol 412:317–321
    [Google Scholar]
  33. Pelkmans L., Kartenbeck J., Helenius A. 2001; Caveolar endocytosis of simian virus 40 reveals a new two-step vesicular-transport pathway to the ER. Nat Cell Biol 3:473–483 [CrossRef]
    [Google Scholar]
  34. Pendleton A. R., Machamer C. E. 2005; Infectious bronchitis virus 3a protein localizes to a novel domain of the smooth endoplasmic reticulum. J Virol 79:6142–6151 [CrossRef]
    [Google Scholar]
  35. Razani B., Schlegel A., Lisanti M. P. 2000; Caveolin proteins in signaling, oncogenic transformation and muscular dystrophy. J Cell Sci 113:2103–2109
    [Google Scholar]
  36. Rota P. A., Obertse M. S., Monroe S. S., Nix W. A., Campagnoli R., Icenogle J. P., Peñaranda S., Bankamp B., Maher K. other authors 2003; Characterization of a novel coronavirus associated with severe acute respiratory syndrome. Science 300:1394–1399 [CrossRef]
    [Google Scholar]
  37. Rothberg K. G., Heuser J. E., Donzell W. C., Ying Y. S., Glenney J. R., Anderson R. G. 1992; Caveolin, a protein component of caveolae membrane coats. Cell 68:673–682 [CrossRef]
    [Google Scholar]
  38. Sargiacomo M., Sudol M., Tang Z., Lisanti M. P. 1993; Signal transducing molecules and glycosyl-phosphatidylinositol-linked proteins form a caveolin-rich insoluble complex in MDCK cells. J Cell Biol 122:789–807 [CrossRef]
    [Google Scholar]
  39. Sargiacomo M., Scherer P. E., Tang Z., Kubler E., Song K. S., Sanders M. C., Lisanti M. P. 1995; Oligomeric structure of caveolin: implications for caveolae membrane organization. Proc Natl Acad Sci U S A 92:9407–9411 [CrossRef]
    [Google Scholar]
  40. Schlegel A., Lisanti M. P. 2000; A molecular dissection of caveolin-1 membrane attachment and oligomerization. Two separate regions of the caveolin-1 C-terminal domain mediate membrane binding and oligomer/oligomer interactions in vivo . J Biol Chem 275:21605–21617 [CrossRef]
    [Google Scholar]
  41. Schlegel A., Schwab R. B., Scherer P. E., Lisanti M. P. 1999; A role for the caveolin scaffolding domain in mediating the membrane attachment of caveolin-1. The caveolin scaffolding domain is both necessary and sufficient for membrane binding in vitro . J Biol Chem 274:22660–22667 [CrossRef]
    [Google Scholar]
  42. Shen S., Lin P. S., Chao Y. C., Zhang A., Yang X., Lim S. G., Hong W., Tan Y. J. 2005; The severe acute respiratory syndrome coronavirus 3a is a novel structural protein. Biochem Biophys Res Commun 330:286–292 [CrossRef]
    [Google Scholar]
  43. Siegel R. M., Chan F. K.-M., Zacharias D. A., Swofford R., Holmes K. L., Tsien R. Y., Lenardo M. J. 2000; Measurement of molecular interactions in living cells by fluorescence resonance energy transfer between variants of the green fluorescent protein. Sci STKE 2000 (38), PL1
    [Google Scholar]
  44. Smart E. J., Graf G. A., McNiven M. A., Sessa W. C., Engelman J. A., Scherer P. E., Okamoto T., Lisanti M. P. 1999; Caveolins, liquid-ordered domains, and signal transduction. Mol Cell Biol 19:7289–7304
    [Google Scholar]
  45. Tan Y. J., Goh P. Y., Fielding B. C., Shen S., Chou C. F., Fu J. L., Leong H. N., Leo Y. S., Ooi E. E. & other authors (2004a). Profiles of antibody responses against severe acute respiratory syndrome coronavirus recombinant proteins and their potential use as diagnostic markers. Clin Diagn Lab Immunol 11:362–371
    [Google Scholar]
  46. Tan Y. J., Teng E., Shen S., Tan T. H., Goh P. Y., Fielding B. C., Ooi E. E., Tan H. C., Lim S. G., Hong W. 2004b; A novel severe acute respiratory syndrome coronavirus protein, U274, is transported to the cell surface and undergoes endocytosis. J Virol 78:6723–6734 [CrossRef]
    [Google Scholar]
  47. Tan Y. J., Tham P. Y., Chan D. Z., Chou C. F., Shen S., Fielding B. C., Tan T. H., Lim S. G., Hong W. 2005; The severe acute respiratory syndrome coronavirus 3a protein up-regulates expression of fibrinogen in lung epithelial cells. J Virol 79:10083–10087 [CrossRef]
    [Google Scholar]
  48. Tyagi S., Surjit M., Kar-Roy A., Jameel S., Lal S. K. 2004; The ORF3 protein of hepatitis E virus interacts with liver-specific α 1-microglobulin and its precursor, α 1-microglobulin/bikunin precursor (AMBP) and expedites their export from the hepatocyte. J Biol Chem 279:29308–29319 [CrossRef]
    [Google Scholar]
  49. Vaughn E. M., Halbur P. G., Paul P. S. 1995; Sequence comparison of porcine respiratory coronavirus isolates reveals heterogeneity in the S, 3, and 3–1 genes. J Virol 69:3176–3184
    [Google Scholar]
  50. Wesley R. D., Woods R. D., Cheung A. K. 1991; Genetic analysis of porcine respiratory coronavirus, an attenuated variant of transmissible gastroenteritis virus. J Virol 65:3369–3373
    [Google Scholar]
  51. Xia Z., Liu Y. 2001; Reliable and global measurement of fluorescence resonance energy transfer using fluorescence microscopes. Biophys J 81:2395–2402 [CrossRef]
    [Google Scholar]
  52. Yount B., Roberts R. S., Sims A. C., Deming D., Frieman M. B., Sparks J., Denison M. R., Davis N., Baric R. S. 2005; Severe acute respiratory syndrome coronavirus group-specific open reading frames encode nonessential functions for replication in cell cultures and mice. J Virol 79:14909–14922 [CrossRef]
    [Google Scholar]
  53. Yu C. J., Chen Y. C., Hsiao C. H., Kuo T. C., Chang S. C., Lu C. Y., Wei W. C., Lee C. H., Huang L. M. other authors 2004; Identification of a novel protein 3a from severe acute respiratory syndrome coronavirus. FEBS Lett 565:111–116 [CrossRef]
    [Google Scholar]
  54. Yuan X., Li J., Shan Y., Yang Z., Zhao Z., Chen B., Yao Z., Dong B., Wang S. other authors 2005; Subcellular localization and membrane association of SARS-CoV 3a protein. Virus Res 109:191–202 [CrossRef]
    [Google Scholar]
  55. Zafrullah M., Ozdener M. H., Kumar R., Panda S. K., Jameel S. 1999; Mutational analysis of glycosylation, membrane translocation, and cell surface expression of the hepatitis E virus ORF2 protein. J Virol 73:4074–4082
    [Google Scholar]
  56. Zeng R., Yang R.-F., Shi M.-D., Jiang M. R., Xie Y. H., Ruan H. Q., Jiang X. S., Shi L., Zhou H. other authors 2004; Characterization of the 3a protein of SARS-associated coronavirus in infected vero E6 cells and SARS patients. J Mol Biol 341:271–279 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.82856-0
Loading
/content/journal/jgv/10.1099/vir.0.82856-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error