1887

Abstract

Enteropathogenic (EPEC) adheres and to epithelial cells. Two main adhesins, the bundle-forming pilus and intimin, encoded by the operon and , respectively, are responsible for the localized and the intimate adherence phenotypes. Deletion of the operon of EPEC abolishes the transport of inorganic phosphate through the phosphate-specific transport system and causes the constitutive expression of the PHO regulon genes. In the absence of there is a decrease in the expression of the main EPEC adhesins and a reduction in bacterial adherence to epithelial cells . This effect is not related to PHO constitutivity, because a Δ double mutant that is defective in the transcription of the PHO genes also displayed low levels of adherence and expression of adhesins. Likewise, a PHO-constitutive mutation did not affect bacterial adherence. The expression of the operon, which encodes the and regulators PerA and PerC, is also negatively affected by the deletion. Overall, the data presented here demonstrate that the operon of EPEC plays a positive role in the bacterial adherence mechanism by increasing the expression of and and consequently the transcription of and .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2008/016634-0
2008-07-01
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/7/2025.html?itemId=/content/journal/micro/10.1099/mic.0.2008/016634-0&mimeType=html&fmt=ahah

References

  1. Batisson I., Guimond M., Girard F., An H., Zhu C., Oswald E., Fairbrother J. M., Jacques M., Harel J. 2003; Characterization of the novel factor Paa involved in the early steps of the adhesion mechanism of attaching and effacing Escherichia coli. Infect Immun 71:4516–4525
    [Google Scholar]
  2. Bracha M., Yagil E. 1973; A new type of alkaline phosphatase negative mutant in Escherichia coli K-12. Mol Gen Genet 122:53–60
    [Google Scholar]
  3. Buckles E. L., Wang X., Lockatell C. V., Johnson D. E., Donnenberg M. S. 2006; PhoU enhances the ability of extraintestinal pathogenic Escherichia coli strain CFT073 to colonize the murine urinary tract. Microbiology 152:153–160
    [Google Scholar]
  4. Carmany D. O., Hollingsworth K., McCleary W. R. 2003; Genetic and biochemical studies of phosphatase activity of PhoR. J Bacteriol 185:1112–1115
    [Google Scholar]
  5. Chan F. Y., Torriani A. 1996; PstB protein of the phosphate-specific transport system of Escherichia coli is an ATPase. J Bacteriol 178:3974–3977
    [Google Scholar]
  6. Churchward G., Belin D., Nagamine Y. 1984; A pSC101-derived plasmid which shows no sequence homology to other commonly used cloning vectors. Gene 31:165–171
    [Google Scholar]
  7. Cox G. B., Webb D., Godovac-Zimmermann J., Rosenberg H. 1988; Arg-220 of the PstA protein is required for phosphate transport through the phosphate-specific transport system in Escherichia coli but not for alkaline phosphatase repression. J Bacteriol 170:2283–2286
    [Google Scholar]
  8. Cox G. B., Webb D., Rosenberg H. 1989; Specific amino acid residues in both the PstB and PstC proteins are required for phosphate transport by the Escherichia coli Pst system. J Bacteriol 171:1531–1534
    [Google Scholar]
  9. Cravioto A., Gross R. J., Scotland S. M., Rowe B. 1979; An adhesive factor found in strains of Escherichia coli belonging to the traditional infantile enteropathogenic serotypes. Curr Microbiol 3:95–99
    [Google Scholar]
  10. Daigle F., Fairbrother J. M., Harel J. 1995; Identification of a mutation in the pst-phoU operon that reduces pathogenicity of an Escherichia coli strain causing septicemia in pigs. Infect Immun 63:4924–4927
    [Google Scholar]
  11. Donnenberg M. S., Girón J. A., Nataro J. P., Kaper J. B. 1992; A plasmid-encoded type IV fimbrial gene of enteropathogenic Escherichia coli associated with localized adherence. Mol Microbiol 6:3427–3437
    [Google Scholar]
  12. Echols H., Garen A., Garen S., Torriani A. 1961; Genetic control of repression of alkaline phosphatase in E. coli. J Mol Biol 3:425–438
    [Google Scholar]
  13. Gober J. W., Shapiro L. 1992; A developmentally regulated Caulobacter flagellar promoter is activated by 3′ enhancer and IHF binding elements. Mol Biol Cell 3:913–926
    [Google Scholar]
  14. Gómez-Duarte O. G., Kaper J. B. 1995; A plasmid-encoded regulatory region activates chromosomal eaeA expression in enteropathogenic Escherichia coli. Infect Immun 63:1767–1776
    [Google Scholar]
  15. Kenny B., DeVinney R., Stein M., Reinscheid D. J., Frey E. A., Finlay B. B. 1997; Enteropathogenic E. coli (EPEC) transfers its receptor for intimate adherence into mammalian cells. Cell 91:511–520
    [Google Scholar]
  16. Kreuzer K., Pratt C., Torriani A. 1975; Genetic analysis of regulatory mutants of alkaline phosphatase of E. coli. Genetics 81:459–468
    [Google Scholar]
  17. Laaberki M. H., Janabi N., Oswald E., Repoila F. 2006; Concert of regulators to switch on LEE expression in enterohemorrhagic Escherichia coli O157 : H7: interplay between Ler, GrlA, HNS and RpoS. Int J Med Microbiol 296:197–210
    [Google Scholar]
  18. Lamarche M. G., Dozois C. M., Daigle F., Caza M., Curtiss R. 3rd, Dubreuil J. D., Harel J. 2005; Inactivation of the pst system reduces the virulence of an avian pathogenic Escherichia coli O78 strain. Infect Immun 73:4138–4145
    [Google Scholar]
  19. LeDeaux J. R., Grossman A. D. 1995; Isolation and characterization of kinC, a gene that encodes a sensor kinase homologous to the sporulation sensor kinases KinA and KinB in Bacillus subtilis. J Bacteriol 177:166–175
    [Google Scholar]
  20. Levine M. M., Nataro J. P., Karch H., Baldini M. M., Kaper J. B., Black R. E., Clements M. L., O'Brien A. D. 1985; The diarrheal response of humans to some classic serotypes of enteropathogenic Escherichia coli is dependent on a plasmid encoding an enteroadhesiveness factor. J Infect Dis 152:550–559
    [Google Scholar]
  21. Levinthal C., Signer E., Fetherolf K. 1962; Reactivation and hybridization of reduced alkaline phosphatase. Proc Natl Acad Sci U S A 48:1230–1237
    [Google Scholar]
  22. Li Y., Zhang Y. 2007; PhoU is a persistence switch involved in persister formation and tolerance to multiple antibiotics and stresses in Escherichia coli. Antimicrob Agents Chemother 51:2092–2099
    [Google Scholar]
  23. Makino K., Shinagawa H., Amemura M., Kimura S., Nakata A., Ishihama A. 1988; Regulation of the phosphate regulon of Escherichia coli. Activation of pstS transcription by PhoB protein in vitro. J Mol Biol 203:85–95
    [Google Scholar]
  24. Makino K., Shinagawa H., Amemura M., Kawamoto T., Yamada M., Nakata A. 1989; Signal transduction in the phosphate regulon of Escherichia coli involves phosphotransfer between PhoR and PhoB proteins. J Mol Biol 210:551–559
    [Google Scholar]
  25. Mellies J. L., Elliott S. J., Sperandio V., Donnenberg M. S., Kaper J. B. 1999; The Per regulon of enteropathogenic Escherichia coli: identification of a regulatory cascade and a novel transcriptional activator, the locus of enterocyte effacement (LEE)-encoded regulator (Ler. Mol Microbiol 33:296–306
    [Google Scholar]
  26. Miller J. H. 1992 A Short Course in Bacterial Genetics: a Laboratory Manual and Handbook for Escherichia coli and Related Bacteria Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  27. Minami J., Okabe A., Hayashi H. 1987; Enzymic detection of adhesion of enteropathogenic Escherichia coli to HEp-2 cells. Microbiol Immunol 31:851–858
    [Google Scholar]
  28. Nataro J. P., Kaper J. B. 1998; Diarrheagenic Escherichia coli. Clin Microbiol Rev 11:142–201
    [Google Scholar]
  29. Puente J. L., Bieber D., Ramer S. W., Murray W., Schoolnik G. K. 1996; The bundle-forming pili of enteropathogenic Escherichia coli: transcriptional regulation by environmental signals. Mol Microbiol 20:87–100
    [Google Scholar]
  30. Rosenshine I., Ruschkowski S., Finlay B. B. 1996; Expression of attaching/effacing activity by enteropathogenic Escherichia coli depends on growth phase, temperature, and protein synthesis upon contact with epithelial cells. Infect Immun 64:966–973
    [Google Scholar]
  31. Runyen-Janecky L. J., Boyle A. M., Kizzee A., Liefer L., Payne S. M. 2005; Role of the Pst system in plaque formation by the intracellular pathogen Shigella flexneri. Infect Immun 73:1404–1410
    [Google Scholar]
  32. Scaletsky I. C., Silva M. L., Trabulsi L. R. 1984; Distinctive patterns of adherence of enteropathogenic Escherichia coli to HeLa cells. Infect Immun 45:534–536
    [Google Scholar]
  33. Schurdell M. S., Woodbury G. M., McCleary W. R. 2007; Genetic evidence suggests that the intergenic region between pstA and pstB plays a role in the regulation of rpoS translation during phosphate limitation. J Bacteriol 189:1150–1153
    [Google Scholar]
  34. Shaw W. V. 1975; Chloramphenicol acetyltransferase from chloramphenicol-resistant bacteria. Methods Enzymol 43:737–755
    [Google Scholar]
  35. Spira B., Silberstein N., Yagil E. 1995; Guanosine 3′,5′-bispyrophosphate (ppGpp) synthesis in cells of Escherichia coli starved for Pi . J Bacteriol 177:4053–4058
    [Google Scholar]
  36. Spira B., Yagil E. 1999; The integration host factor (IHF) affects the expression of the phosphate-binding protein and of alkaline phosphatase in Escherichia coli. Curr Microbiol 38:80–85
    [Google Scholar]
  37. Steed P. M., Wanner B. L. 1993; Use of the Rep technique for allele replacement to construct mutants with deletions of the pstSCAB-phoU operon: evidence of a new role for the PhoU protein in the phosphate regulon. J Bacteriol 175:6797–6809
    [Google Scholar]
  38. Stone K. D., Zhang H. Z., Carlson L. K., Donnenberg M. S. 1996; A cluster of fourteen genes from enteropathogenic Escherichia coli is sufficient for the biogenesis of a type IV pilus. Mol Microbiol 20:325–337
    [Google Scholar]
  39. Taschner N. P., Yagil E., Spira B. 2004; A differential effect of . σS on the expression of the PHO regulon genes of Escherichia coli. Microbiology 150:2985–2992
    [Google Scholar]
  40. Tobe T., Schoolnik G. K., Sohel I., Bustamante V. H., Puente J. L. 1996; Cloning and characterization of bfpTVW, genes required for the transcriptional activation of bfpA in enteropathogenic Escherichia coli. Mol Microbiol 21:963–975
    [Google Scholar]
  41. von Krüger W. M., Humphreys S., Ketley J. M. 1999; A role for the PhoBR regulatory system homologue in the Vibrio cholerae phosphate-limitation response and intestinal colonization. Microbiology 145:2463–2475
    [Google Scholar]
  42. Wanner B. 1996; Phosphorus assimilation and control of the phosphate regulon. In Escherichia coli and Salmonella. Cellular and Molecular Biology pp 1357–1381 Edited by Neidhardt F. C. others Washington, DC: American Society for Microbiology;
    [Google Scholar]
  43. Webb D. C., Rosenberg H., Cox G. B. 1992; Mutational analysis of the Escherichia coli phosphate-specific transport system, a member of the traffic ATPase (or ABC) family of membrane transporters. A role for proline residues in transmembrane helices. J Biol Chem 267:24661–24668
    [Google Scholar]
  44. Xiao H., Kalman M., Ikehara K., Zemel S., Glaser G., Cashel M. 1991; Residual guanosine 3′,5′-bispyrophosphate synthetic activity of relA null mutants can be eliminated by spoT null mutations. J Biol Chem 266:5980–5990
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2008/016634-0
Loading
/content/journal/micro/10.1099/mic.0.2008/016634-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error